摘要:
A bipolar transistor (100) and a method for forming the same. A base-link diffusion source layer (118) is formed over a portion of the collector region (102). The base-link diffusion source layer (118) comprises a material that is capable of being used as a dopant source and is capable of being etched selectively with respect to silicon. A barrier layer (119) is formed over the base-link diffusion source layer (118). A base electrode (114) is formed over at least one end portion of the barrier layer (119) and base-link diffusion source layer (118) and the exposed portions of the barrier layer (119) and underlying base-link diffusion source layer (118) are removed. An extrinsic base region (110) is diffused from the base electrode (114) and a base link-up region (112) is diffused from the base-link diffusion source layer (118). Processing may then continue to form an intrinsic base region (108), emitter region (126), and emitter electrode (124).
摘要:
Disclosed is a system for fabricating an integrated circuit capacitor (100). An electrode layer (102) is formed in the integrated circuit. An anti-reflective coating (108) is deposited over the electrode layer (102). An electrode top plate (104) is formed over the anti-reflective coating (108).
摘要:
A bipolar transistor (100) and a method for forming the same. A base-link diffusion source layer (118) is formed over a portion of the collector region (102). The base-link diffusion source layer (118) comprises a material that is capable of being used as a dopant source and is capable of being etched selectively with respect to silicon. A barrier layer (119) is formed over the base-link diffusion source layer (118).A base electrode (114) is formed over at least one end portion of the barrier layer (119) and base-link diffusion source layer (118) and the exposed portions of the barrier layer (119) and underlying base-link diffusion source layer (118) are removed. An extrinsic base region (110) is diffused from the base electrode (114) and a base link-up region (112) is diffused from the base-link diffusion source layer (118). Processing may then continue to fore an intrinsic base region (108), emitter region (126), and emitter electrode (124).
摘要:
An illuminated nipple cover that directs light to a skin contact member, which may be translucent or clear. The skin contact member is covered with an opaque cover so the skin contact member is illuminated, and the opaque cover blocks light from being seen from the skin contact member.
摘要:
A method is disclosed to form a seed layer for an integrated circuit. The method may include depositing a metal seed layer (106) over a barrier layer (104) such that the metal seed layer (106) has a greater thickness along a top surface portion (114) of at least one recessed feature (102) formed in the substrate that is substantially coplanar with the substrate than a sidewall surface portion (112) of the at least one recessed feature (102). A portion of the metal seed layer (106) is etched from the top surface portion (114) of the at least one recessed feature (102) to improve coverage of the metal seed layer (106) along the sidewall surface portion (112) of the at least one recessed feature (102) and to mitigate overhang of the metal seed layer.
摘要:
An interchangeable patch hat apparatus for providing variable designs for a single hat includes a hat body having a front portion with a patch aperture extending from an outer surface through an inner surface. A patch has an outer face, an inner face, and a patch edge. The patch is dimensioned to be larger than the patch aperture. A plurality of engagement members comprises a plurality of first engagement members coupled to the patch proximal the patch edge and a plurality of second engagement members coupled to the front portion of the hat body proximal the patch aperture. The first engagement members are selectively engageable with the second engagement members to couple the patch to the hat body and cover the patch aperture. The patch is thus interchangeable to offer a choice of logo or design displayed on the apparatus.
摘要:
A gold alloy that is usable for jewelry and other applications. The gold alloy is made by combining Y % gold with Z % of a master alloy, wherein Y+Z=100. The gold alloy may be made by first forming the master alloy and then mixing the gold with the master alloy. The gold alloy may also be made by mixing gold with the elements of the master alloy without first forming the master alloy. In another embodiment, the master alloy used to make a white gold (variable) karat alloy will include from about 23.33% to about 43.33% copper, from about 23.33% to about 43.33% nickel, from about 3.33% to about 23.33% zinc, and from about 10 to about 30% silver. Another embodiment of a master alloy used to make a white gold (variable) karat alloy will include from about 43.33% to about 66% copper, from about 8 to about 39.33% nickel, and from about 4.67% to about 36.67% zinc.
摘要:
A gold alloy that is usable for jewelry and other applications. The gold alloy is made by combining Y % gold with Z % of a master alloy, wherein Y+Z=100. The gold alloy may be made by first forming the master alloy and then mixing the gold with the master alloy. The gold alloy may also be made by mixing gold with the elements of the master alloy without first forming the master alloy. In another embodiment, the master alloy used to make a white gold (variable) karat alloy will include from about 23.33% to about 43.33% copper, from about 23.33% to about 43.33% nickel, from about 3.33% to about 23.33% zinc, and from about 10 to about 30% silver. Another embodiment of a master alloy used to make a white gold (variable) karat alloy will include from about 43.33% to about 66% copper, from about 8 to about 39.33% nickel, and from about 4.67% to about 36.67% zinc.