Abstract:
A static memory apparatus and a static memory cell thereof are provided. The static memory cell includes a data latch circuit, a data write-in circuit and a data read-out circuit. The data latch circuit has a first tristate output inverting circuit and a second tristate output inverting circuit. The data write-in circuit provides a first reference voltage to a power receiving terminal of a selected tristate output inverting circuit which is one of the first and second tristate output inverting circuits, and provides a second reference voltage to an input terminal of the selected tristate output inverting circuit during a data write-in time period. The data read-out circuit generates read-out data according to a voltage at an output terminal of the second tristate output inverting circuit and the second reference voltage during a data read-out time period.
Abstract:
An arbitrating circuit includes a first NOR gate, a second NOR gate, four resistors and a pull-up circuit. The first transistor is connected with the first node and the second node, and generates a first acknowledging signal. The second transistor is connected with a supply voltage, the second node and the first transistor. The third transistor is connected with the first node and second node, and generates a second acknowledging signal. The fourth transistor is connected with the supply voltage, the first node and the third transistor. The pull-up circuit is connected with the first node, the second node, the first NOR gate and the second NOR gate. If both of the first request signal and the second request signal have a low logic level, a voltage at the second node is pulled up to a high logic level by the pull-up circuit.
Abstract:
A memory includes a logic controller, a word line driver, a boost circuit, plural capacitor circuits, plural memory cores, plural selectors, and plural output drivers. The logic controller generates a word line enabling signal and a boost enabling signal. The word line driver receives the word line enabling signal. The boost circuit receives the boost enabling signal. The plural capacitor circuits are connected between the boost circuit and the word line driver. Each of the plural memory cores is connected with the word line driver through plural word lines. The plural selectors are connected with the corresponding memory cores. The plural output drivers are connected with the corresponding selectors. The number of the plural memory cores is positively correlated with the number of the plural capacitor circuits.
Abstract:
A memory includes a logic controller, a word line driver, a boost circuit, plural capacitor circuits, plural memory cores, plural selectors, and plural output drivers. The logic controller generates a word line enabling signal and a boost enabling signal. The word line driver receives the word line enabling signal. The boost circuit receives the boost enabling signal. The plural capacitor circuits are connected between the boost circuit and the word line driver. Each of the plural memory cores is connected with the word line driver through plural word lines. The plural selectors are connected with the corresponding memory cores. The plural output drivers are connected with the corresponding selectors. The number of the plural memory cores is positively correlated with the number of the plural capacitor circuits.