Abstract:
According to some aspects of the invention, auxiliary axis measurement systems for determining three-dimensional coordinates of an object are provided as shown and described herein. According to some aspects of the invention, methods for operating auxiliary axis measurement systems for determining three-dimensional coordinates of an object are provided as shown and described herein.
Abstract:
Securing data acquired by coordinate measurement devices including receiving a request from a requestor to access a data file including data that was acquired by a coordinate measurement device. The data file is retrieved and the content of the data file is authenticated. The authenticating includes retrieving an expected digital security attribute previously calculated by a digital security function based on content of the data file prior to the data file being retrieved. The authenticating also includes applying the digital security function to the data file to calculate an actual digital security attribute, and comparing the expected digital security attribute to the actual digital security attribute. Based on the comparing, a value of valid or not valid is assigned to an output of the authenticating.
Abstract:
A three-dimensional (3D) coordinate measurement device combines tracker and scanner functionality. The tracker function is configured to send light to a retroreflector and determine distance to the retroreflector based on the reflected light. The tracker is also configured to track the retroreflector as it moves, and to determine 3D coordinates of the retroreflector. The scanner is configured to send a beam of light to a point on an object surface and to determine 3D coordinate of the point. In addition, the scanner is configured to adjustably focus the beam of light.
Abstract:
A spherically mounted retroreflector (SMR) includes a substrate, an optic, and an adhesive. The substrate has a partially spherical outer surface and a cavity, the partially spherical outer surface has a sphere center. The optic has a cube-corner retroreflector fixedly disposed within the cavity; the cube-corner retroreflector has an optical vertex. The adhesive is disposed between the optic and the substrate and fixedly adheres the optic to the substrate. The optical vertex is coincident with the sphere center. The substrate is made from a ferromagnetic material and has an electroless nickel outer coating.
Abstract:
Measuring with a system having retroreflector targets and a laser tracker includes storing a list of coordinates for three targets and at least one added point; capturing on a photosensitive array a portion of the light emitted by a light beam and reflected off the targets; obtaining spot positions on a photosensitive array of a tracker camera from the reflected light; determining a correspondence between three spot positions on the photosensitive array and the coordinates of the targets; directing a beam of light from the tracker to the targets based at least in part on the coordinates of the first target and the first spot position; measuring 3-D coordinates of the targets with the tracker; determining 3-D coordinates of the at least one added point based at least in part on the measured 3-D coordinates of the targets and the coordinates of the at least one added point.
Abstract:
A method for optically communicating, from a user to a laser tracker, a command to direct a light beam from the tracker to a retroreflector and lock onto the retroreflector includes projecting a first light to the retroreflector. Also, moving by the user the retroreflector in a predefined spatial pattern which corresponds to the command; reflecting a second light from the retroreflector, the second light being a portion of the first light; obtaining first sensed data by sensing a third light which is a portion of the second light and imaging the third light onto a photosensitive array on the tracker and converting the third light on the photosensitive array into digital form. Further, determining the first sensed data corresponds to the predefined spatial pattern; pointing the light beam from the tracker to the retroreflector; and locking onto the retroreflector with the tracker light beam.
Abstract:
A method for optically communicating, from a user to a laser tracker, a command to direct a light beam from the tracker to a retroreflector and lock onto the retroreflector includes projecting a first light to the retroreflector. Also, moving by the user the retroreflector in a predefined spatial pattern which corresponds to the command; reflecting a second light from the retroreflector, the second light being a portion of the first light; obtaining first sensed data by sensing a third light which is a portion of the second light and imaging the third light onto a photosensitive array on the tracker and converting the third light on the photosensitive array into digital form. Further, determining the first sensed data corresponds to the predefined spatial pattern; pointing the light beam from the tracker to the retroreflector; and locking onto the retroreflector with the tracker light beam.
Abstract:
A method for optically communicating, from a user to a laser tracker, a command to control tracker operation includes providing a rule of correspondence between commands and temporal patterns, and selecting by the user a first command. Also, projecting a first light from the tracker to the retroreflector, reflecting a second light from the retroreflector, the second light being a portion of the first light, obtaining first sensed data by sensing a third light which is a portion of the second light, creating by the user, between first and second times, a first temporal pattern which includes a decrease in the third optical power followed by an increase in the third optical power, the first temporal pattern corresponding to the first command, determining the first command based on processing the first sensed data per the rule of correspondence and executing the first command with the tracker.
Abstract:
A method of operating a coordinate measurement device includes selecting an operating mode on the coordinate measurement device. A first light is emitted from at least one light source of the coordinate measurement device. At least two angles associated with the emitting of the first light are measured. A second light is received with an optical detector of the coordinate measurement device. The second light is a reflection of the first light off of at least one of the retroreflector and the surface. A first distance is determined based at least in part on a mode of the coordinate measurement device that is selected, the emitting of the first light, and the receiving of the second light. Three dimensional coordinates of a point in the environment is determined based on the measuring of the at least two angles and at least one of the first distance and the second distance.
Abstract:
A three-dimensional (3D) coordinate measurement device combines tracker and scanner functionality. The tracker function is configured to send light to a retroreflector and determine distance to the retroreflector based on the reflected light. The tracker is also configured to track the retroreflector as it moves, and to determine 3D coordinates of the retroreflector. The scanner is configured to send a beam of light to a point on an object surface and to determine 3D coordinate of the point. In addition, the scanner is configured to adjustably focus the beam of light.