Abstract:
Various methods and systems are provided for imaging a sample under low vacuum with a charged particle beam. A magnetic field is provided in a detection area of the detector. Gas and plasma are provided in the detection area while detecting charged particles emitted from the sample. Sample image is formed based on the detected charged particles.
Abstract:
Methods and systems for direct lithographic pattern definition based upon electron beam induced alteration of the surface chemistry of a substrate are described. The methods involve an initial chemical treatment for global definition of a specified surface chemistry (SC). Electron beam induced surface reactions between a gaseous precursor and the surface are then used to locally alter the SC. High resolution patterning of stable, specified surface chemistries upon a substrate can thus be achieved. The defined patterns can then be utilized for selective material deposition via methods which exploit the specificity of certain SC combinations or by differences in surface energy. It is possible to perform all steps in-situ without breaking vacuum.
Abstract:
Methods and systems for direct lithographic pattern definition based upon electron beam induced alteration of the surface chemistry of a substrate are described. The methods involve an initial chemical treatment for global definition of a specified surface chemistry (SC). Electron beam induced surface reactions between a gaseous precursor and the surface are then used to locally alter the SC. High resolution patterning of stable, specified surface chemistries upon a substrate can thus be achieved. The defined patterns can then be utilized for selective material deposition via methods which exploit the specificity of certain SC combinations or by differences in surface energy. It is possible to perform all steps in-situ without breaking vacuum.
Abstract:
Various methods and systems are provided for imaging a sample under low vacuum with a charged particle beam. A magnetic field is provided in a detection area of the detector. Gas and plasma are provided in the detection area while detecting charged particles emitted from the sample. Sample image is formed based on the detected charged particles.
Abstract:
Methods and systems for direct lithographic pattern definition based upon electron beam induced alteration of the surface chemistry of a substrate are described. The methods involve an initial chemical treatment for global definition of a specified surface chemistry (SC). Electron beam induced surface reactions between a gaseous precursor and the surface are then used to locally alter the SC. High resolution patterning of stable, specified surface chemistries upon a substrate can thus be achieved. The defined patterns can then be utilized for selective material deposition via methods which exploit the specificity of certain SC combinations or by differences in surface energy. It is possible to perform all steps in-situ without breaking vacuum.