Process for removal of nitrogen from natural gas

    公开(公告)号:US09988587B2

    公开(公告)日:2018-06-05

    申请号:US14812888

    申请日:2015-07-29

    IPC分类号: C10L3/10

    摘要: A method for removing nitrogen from natural gas includes contacting substantially dry natural gas that contains unwanted nitrogen with lithium metal. The nitrogen reacts with lithium to form lithium nitride, which is recovered for further processing, and pipeline quality natural gas. The natural gas may optionally contain other chemical species that may be reduced by lithium, such as carbon dioxide, hydrogen sulfide, and small amounts of water. These lithium reducible species may be removed from the natural gas concurrently with the removal of nitrogen. The lithium nitride is subjected to an electrochemical process to regenerate lithium metal. In an alternative embodiment, lithium nitride is reacted with sulfur to form lithium sulfide and nitrogen. The lithium sulfide is subjected to an electrochemical process to regenerate lithium metal and sulfur. The electrochemical processes are advantageously performed in an electrolytic cell containing a lithium ion selective membrane separator.

    Electrochemical production of hydrogen

    公开(公告)号:US10337108B2

    公开(公告)日:2019-07-02

    申请号:US15061427

    申请日:2016-03-04

    摘要: Electrochemical systems and methods for producing hydrogen. Generally, the systems and methods involve providing an electrochemical cell that includes an anolyte compartment holding an anode in contact with an anolyte, wherein the anolyte includes an oxidizable substance having a higher standard oxidation potential than water. The cell further comprises a catholyte compartment holding a cathode in contact with a catholyte that includes a substance that reduces to form hydrogen. Additionally, the cell includes an alkali cation conductive membrane that separates the anolyte compartment from the catholyte compartment. As an electrical potential passes between the anode and cathode, the reducible substance reduces to form hydrogen and the oxidizable substance oxidizes to form an oxidized product. The pH within the catholyte compartment may be controlled and maintained to a value in the range of 6 to 8. Apparatus and methods to regenerate the oxidizable substance are disclosed.