Abstract:
A method for determining a location of a vehicle includes a global navigation satellite system (GNSS) location system in a manufacturing environment. The method includes determining, when a key cycle transition condition of the vehicle and a vehicle gear transition condition of the vehicle are satisfied, a location parameter of the vehicle using an auxiliary location detection system, where the location parameter includes a location of the vehicle, identification information of the vehicle, and a timestamp of the vehicle. The method includes determining a vehicle time period based on the location parameter and a previous location parameter of the vehicle and validating a manufacturing routine of the vehicle when the location parameter satisfies a location condition and the vehicle time period satisfies a time condition.
Abstract:
A method for determining a location of a vehicle includes a global navigation satellite system (GNSS) location system in a manufacturing environment. The method includes determining, when a key cycle transition condition of the vehicle and a vehicle gear transition condition of the vehicle are satisfied, a location parameter of the vehicle using an auxiliary location detection system, where the location parameter includes a location of the vehicle, identification information of the vehicle, and a timestamp of the vehicle. The method includes determining a vehicle time period based on the location parameter and a previous location parameter of the vehicle and validating a manufacturing routine of the vehicle when the location parameter satisfies a location condition and the vehicle time period satisfies a time condition.
Abstract:
A motor vehicle comprises an HVAC system including a climate control circuit coupled to onboard sensors, a human-machine interface, and climate actuators. The actuators are responsive to respective command parameters generated by the control circuit in response to the sensors and the human-machine interface. A wireless communication system transmits vehicle HVAC data to and receives crowd data from a remote server. The control circuit initiates a request for crowd data via the communication system to the remote server, wherein the request includes peer parameters for identifying a vehicle environment. The control circuit receives a response via the communication system from the remote server. The response comprises crowd data and at least one weight indicating a confidence level associated with the crowd data. The control circuit generates at least one command parameter using a set of fuzzy rules responsive to the crowd data and the weight from the response.
Abstract:
A motor vehicle comprises an HVAC system including a climate control circuit coupled to onboard sensors, a human-machine interface, and climate actuators. The actuators are responsive to respective command parameters generated by the control circuit in response to the sensors and the human-machine interface. A wireless communication system transmits vehicle HVAC data to and receives crowd data from a remote server. The control circuit initiates a request for crowd data via the communication system to the remote server, wherein the request includes peer parameters for identifying a vehicle environment. The control circuit receives a response via the communication system from the remote server. The response comprises crowd data and at least one weight indicating a confidence level associated with the crowd data. The control circuit generates at least one command parameter using a set of fuzzy rules responsive to the crowd data and the weight from the response.
Abstract:
A motor vehicle comprises an HVAC system including a climate control circuit coupled to onboard sensors, a human-machine interface, and climate actuators. The actuators are responsive to respective command parameters generated by the control circuit in response to the sensors and the human-machine interface. A wireless communication system transmits vehicle HVAC data to and receives crowd data from a remote server. The control circuit initiates a request for crowd data via the communication system to the remote server, wherein the request includes peer parameters for identifying a vehicle environment. The control circuit receives a response via the communication system from the remote server. The response comprises crowd data and at least one weight indicating a confidence level associated with the crowd data. The control circuit generates at least one command parameter using a set of fuzzy rules responsive to the crowd data and the weight from the response.
Abstract:
A motor vehicle comprises an HVAC system including a climate control circuit coupled to onboard sensors, a human-machine interface, and climate actuators. The actuators are responsive to respective command parameters generated by the control circuit in response to the sensors and the human-machine interface. A wireless communication system transmits vehicle HVAC data to and receives crowd data from a remote server. The control circuit initiates a request for crowd data via the communication system to the remote server, wherein the request includes peer parameters for identifying a vehicle environment. The control circuit receives a response via the communication system from the remote server. The response comprises crowd data and at least one weight indicating a confidence level associated with the crowd data. The control circuit generates at least one command parameter using a set of fuzzy rules responsive to the crowd data and the weight from the response.