Abstract:
A method for controlling a vehicle transmission system having a clutch system includes generating a torque-pressure (T-P) gain deviation based on a T-F characteristic and a nominal T-F characteristic for the clutch system, generating a pressure magnitude deviation based on the set of pressure values and the set of nominal pressure values, determining whether a T-F characteristic deviates from the nominal T-F characteristic based on the T-P gain deviation and the pressure magnitude deviation, identifying the T-F characteristic as deviating in response to the T-F characteristic departing from the nominal transfer characteristic, and issuing a notification regarding the deviating T-F characteristic to perform a corrective action related to the clutch system.
Abstract:
A vehicle includes a transmission, an engine, a disconnect clutch, an inertial measurement unit, and a controller. The transmission has an input shaft and an output shaft. The engine is configured to generate and deliver torque to the input shaft. The disconnect clutch is configured to connect and disconnect the engine from the input shaft. The disconnect clutch is also configured to crank the engine during an engine start. The inertial measurement unit is configured to measure inertial forces exerted onto the vehicle. The controller is programmed to, in response to a command to adjust a torque of the disconnect clutch to a desired value that is derived from the inertial forces and a vehicle velocity, drive the clutch actuator pressure to a value that corresponds to the desired value.
Abstract:
Methods and system are described for changing a driveline gear range from a higher gear range to a lower gear range. The driveline may include two electric machines and four clutches in a four wheel drive configuration. The methods and systems permit a driveline to change from a higher gear range to a lower gear range without stopping a vehicle.
Abstract:
Impeller speed, which is difficult to measure when a torque converter includes an impeller clutch, is estimated based on a known relationship among impeller speed, turbine speed, and turbine torque. Turbine torque may be directly measured by a turbine torque sensor or estimated based on other measurements such as output shaft torque or vehicle acceleration. The relationship is stored in a controller in terms of the coefficients of a second order polynomial relating turbine torque to impeller speed and turbine speed. A slip speed is calculated based on a measured input shaft speed and the estimated impeller speed. Closed loop control is used to adjust the impeller clutch torque capacity to maintain a target slip.
Abstract:
Systems and methods for operating a driveline of a hybrid vehicle are described. In one example, vehicle launch is controlled according to a linear quadratic regulator that provides feedback control according to torque converter slip error and vehicle speed error. The vehicle launch is also controlled according to feed forward control that is based on requested torque converter slip and requested vehicle speed.
Abstract:
Powertrains may include a spring damper between the engine crankshaft and transmission input shaft. In some circumstances, an oscillation known as shuffle may occur in such powertrains. Active adjustment of engine torque is substantially more effective at mitigating shuffle oscillations if the engine torque includes a p-term proportional to displacement of the damper spring in addition to a d-term proportional to the speed difference across the damper. For various reasons, the spring displacement is difficult to measure directly. An observer algorithm is utilized to calculate a current estimated spring displacement based on a crankshaft speed sensor, a transmission input speed sensor, a wheel speed sensor, and past engine torques, using a dynamic model of the powertrain.
Abstract:
A method of down-shifting a transmission avoids output shaft oscillations by briefly increasing the torque capacity of an off-going element at the end of the inertia phase. The torque capacity of the off-going element is then reduced to zero when the measured transmission speed ratio begins to decrease. The method is suitable for downshifts that involve multiple off-going elements and multiple on-coming elements such as a shift from tenth gear to sixth gear in a ten speed transmission.
Abstract:
A vehicle includes a transmission, a powerplant, an inertial measurement unit, and a controller. The transmission has an input shaft and an output shaft. The powerplant is configured to generate and deliver torque to the input shaft. The inertial measurement unit is configured to measure inertial forces exerted onto the vehicle. The controller is programmed to, in response to a demanded torque at the output shaft and a non-transient condition of the vehicle, control the torque at the output shaft based on a torque at the input shaft and a gear ratio of the step-ratio transmission. The controller is further programmed to, in response to the demanded torque at the output shaft and a transient condition of the vehicle, control the torque at the output shaft based on the inertial forces and a vehicle velocity.
Abstract:
A vehicle includes a transmission, a powerplant, an inertial measurement unit, and a controller. The transmission has an input shaft and an output shaft. The powerplant is configured to generate and deliver torque to the input shaft. The inertial measurement unit is configured to measure inertial forces exerted onto the vehicle. The controller is programmed to, in response to a demanded torque at the output shaft and a non-transient condition of the vehicle, control the torque at the output shaft based on a torque at the input shaft and a gear ratio of the step-ratio transmission. The controller is further programmed to, in response to the demanded torque at the output shaft and a transient condition of the vehicle, control the torque at the output shaft based on the inertial forces and a vehicle velocity.
Abstract:
Methods and systems are provided for operating a vehicle that includes a torque vectoring electric machine. In one example, torque output of a torque vectoring electric machine is adjusted to reduce driveline torque disturbances when the torque vectoring electric machine is activated. The torque output is adjusted in response to a speed difference between a wheel speed and a speed of the torque vectoring electric machine.