Abstract:
Provided are a soundproof structure and a soundproof unit that can be reduced in size and thickness in the soundproof structure using Helmholtz resonance. The soundproof structure that includes a housing forming a space therein and having a through hole that allows the space to communicate with an outside, and generates Helmholtz resonance by the space and the through hole, the soundproof structure includes a rear surface plate disposed at a position overlapping the through hole on the space side as viewed from a penetrating direction of the through hole, in which assuming that a diameter of the through hole is Φ and a distance from the rear surface plate to an opening surface of the through hole on the space side is d, d≤Φ is satisfied and d≤6 mm is satisfied.
Abstract:
Provided are a partition member including a soundproof structure capable of efficiently insulating noise with a lightweight configuration, and an electronic device and a vehicle using the partition member. In the partition member including the soundproof structure, the soundproof structure includes a support body having an opening, and a membrane-like member that is fixed to an opening surface of the support body in which the opening is formed and that vibrates as noise is incident, and a rear surface plate fixed to the support body on a side opposite to the membrane-like member, and the soundproof structure absorbs a sound by a resonance structure formed by a rear surface space surrounded by the rear surface plate, the membrane-like member, and the support body and the membrane-like member, and insulates a sound having a frequency higher than a relative maximum resonance frequency at which a sound absorption coefficient becomes a relative maximum among resonance frequencies of the resonance structure. The relative maximum resonance frequency is set to be lower than a sound insulation target frequency set for noise. Furthermore, in a case where the sound insulation target frequency is indicated as fn and the relative maximum resonance frequency is indicated as fr, fn/fr is 1.05 to 1.50.
Abstract:
Provided is a soundproof structure that is small and light and can reduce a noise with a high specific frequency of a sound source at a plurality of frequencies at the same time. The soundproof structure has a membrane-like member, a plate-like member that is disposed to face the membrane-like member and in which at least one through-hole is formed, and a support that is formed of a rigid body and supports the plate-like member and the membrane-like member, in which the membrane-like member is supported by the support so as to perform membrane vibration, in which a rear surface space is provided between the membrane-like member and the plate-like member, in which a first space is provided on a side opposite to the rear surface space with the plate-like member sandwiched therebetween, in which the membrane-like member, the support, the plate-like member, and the rear surface space form a first sound absorbing portion that absorbs a sound by membrane vibration, in which the plate-like member, the support, and the first space form a second sound absorbing portion that absorbs a sound by Helmholtz resonance, and in which assuming that a fundamental frequency of membrane vibration of the membrane-like member in a case where the plate-like member is regarded as a rigid body in which the through-hole is not formed in the first sound absorbing portion is fm1 and a fundamental frequency of Helmholtz resonance of the second sound absorbing portion is fh1, fm1
Abstract:
A soundproof structure body includes a first tube structure and a second tube structure connected to the first tube structure and having a cross-sectional area different from the first tube structure, in which a structure body having a cross-sectional area smaller than a cross-sectional area of the first tube structure is installed in the first tube structure, and a transmission loss in a case where the structure body is installed in the first tube structure with respect to a case where the structure body is not installed in the first tube structure is positive at two frequencies adjacent to each other and difficult to generate an air column resonance mode in the first tube structure. This soundproof structure body generates a soundproof effect even at frequencies other than air column resonance of a tube structure such as a duct or a muffler, has a small size, and can obtain a high transmission loss in a wide-band.
Abstract:
A soundproof member includes one or more soundproof cells each including a frame having a hole portion and a film fixed to the frame. The film vibrates in response to sound, and the film includes one or more cut portions penetrating from one surface to the other surface. As a result, in the soundproof member, a specific frequency has an absorption peak of noise in order to suppress noise of the specific frequency, and a peak spreads,
Abstract:
A soundproof structure has two or more soundproof units. Each of the soundproof units has an outer shell having a cylindrical shape, has a hollow inner space inside the outer shell, and has a first opening portion opened to outside on a surface that is one end portion of the outer shell in an axis direction of the cylindrical shape. The two soundproof units adjacent to each other are disposed in the axis direction such that the first opening portions face each other. The first opening portions facing each other are spaced apart from each other in the axis direction. An average distance in the axis direction between the first opening portions facing each other is less than 20 mm. Accordingly, there are provided a soundproof structure and a soundproof system which can insulate sounds on the low frequency side with a simple configuration, are small and lightweight, and can easily change the frequency characteristics.
Abstract:
There is provided a soundproof structure which is light and thin, which has air permeability so that wind and heat can pass therethrough and accordingly no heat accumulates on the inside, and which is suitable for equipment, automobiles, and household applications. The soundproof structure has one or more soundproof cells. Each soundproof cell includes a frame having a through-hole through which sound passes, a film fixed to the frame, an opening portion configured to include one or more holes drilled in the film, and a weight disposed on the film. The soundproof structure has a first shielding peak frequency, which is determined by the opening portion drilled in the film and at which a transmission loss is maximized, on a lower frequency side than a first natural vibration frequency of the film of each soundproof cell and a second shielding peak frequency, which is determined by the weight and at which a transmission loss is maximized, on a higher frequency side than the first natural vibration frequency of the film, and selectively insulates sound in a predetermined frequency band centered on the first shielding peak frequency and sound in a predetermined frequency band centered on the second shielding peak frequency.
Abstract:
An antireflection film including a transparent thin film layer, and a transparent fine uneven layer whose main component is an alumina hydrate, which layers are formed in this order on a surface of a transparent substrate, is provided. The transparent thin film layer includes, in order from the transparent substrate side: an alumina layer; a water barrier layer which has a refractive index lower than the refractive index of the alumina layer and protects the alumina layer from water; and a flat layer whose main component is an alumina hydrate and whose refractive index is lower than the refractive index of the water barrier layer, and the water barrier layer has a thickness of 70 nm or less.
Abstract:
A multilayer structure including a metal particles-containing layer, a layer A having a refractive index, n1, and a layer B having a refractive index, n2, and satisfying one of the conditions (1-1) and (2-1) is capable of suppressing reflection of light at a wavelength λ intended to prevent reflection. n1 n2 and 0+mλ/2
Abstract:
Provided is a ventilation system in which a silencer has a compact structure, a silencing property is ensured, and a pressure loss in the silencer is suppressed. The ventilation system of the present invention has a silencer disposed at an intermediate position of a ventilation path. In the silencer, a sound absorbing member surrounds a housing in which an in-housing ventilation path extending from an inlet opening to an outlet opening is provided. In addition, an upstream tube body that forms an upstream ventilation path on an upstream side of an inlet opening, a downstream tube body that forms a downstream ventilation path on a downstream side of an outlet opening, a tubular first connecting portion that is connected to the upstream tube body and that links the upstream ventilation path and the inlet opening to each other, and a tubular second connecting portion that is connected to the downstream tube body and that links the downstream ventilation path and the outlet opening to each other are provided. Each of the first connecting portion and the second connecting portion includes an opening portion therein. The closer to the in-housing ventilation path, the smaller a size of a cross section of the opening portion of at least one connecting portion.