Abstract:
A photocatalytic layer arrangement includes a carrier substrate on which a chromium layer with a defined nitrogen content is deposited. A titanium oxide layer having the formula TiOx (x=2-4) is grown on the chromium layer, and the anatase phase of the titanium oxide layer with respect to the rutile phase of the titanium oxide layer has a percentage in the range of 30%-90%.
Abstract:
The present disclosure relates to a decoration member comprising a color developing layer comprising a light reflective layer and a light absorbing layer provided on the light reflective layer; and a substrate provided on one surface of the color developing layer, wherein the light absorbing layer comprises a molybdenum-titanium oxide (MoaTibOx).
Abstract:
The present disclosure relates to an optical filter and an infrared image sensing system including the optical filter. The optical filter includes a glass substrate, and an IR film layer and an AR film layer plated on two opposite surfaces of the glass substrate; the IR film layer includes a first refractive-index-material layer, a second refractive-index-material layer, and a third refractive-index-material layer; the refractive index of the third refractive-index-material layer is greater than the refractive index of the first refractive-index-material layer, and the refractive index of the second refractive-index-material layer is greater than the refractive index of the third refractive-index-material layer. The optical filter of the present disclosure has a good anti-reflection effect on near-infrared light so that a high accuracy of face recognition and gesture recognition is ensured.
Abstract:
There are provided coated articles that include two or more infrared (IR) reflecting layers (e.g., of or including NbZr, Nb, NiCr, NiCrMo, and/or a nitride thereof) sandwiched between at least dielectric layers, and/or a method of making the same. The coating may be designed so that the coated articles realize blue glass side reflective coloration in combination with a low glass side visible reflectance, acceptable film side coloration, and low solar factor (SF) and/or a low solar heat gain coefficient (SHGC). Such coated articles may be used in the context of monolithic windows, insulating glass (IG) window units, laminated windows, and/or other suitable applications, and may optionally be heat treated (e.g., thermally tempered) in certain instances.
Abstract:
A cover panel for a fitout article or article of equipment for a kitchen or laboratory is provided. The cover panel includes a glass or glass ceramic substrate and a coating on one side of the substrate. The substrate and the coating together have a light transmittance of 1% to 70%. The coating has a colour locus in the CIELAB colour space within the range of coordinates L* of 20 to 65, a* of −6 to 6 and b* of −6 to 6. The colour locus of the D65 standard illuminant light, after passing through the substrate and the coating, is within a white region W1 determined in the chromaticity diagram CIExyY-2° by the following coordinates: White region W1 xY 0.270.21 0.220.25 0.320.37 0.450.45 0.470.34 0.360.29.
Abstract:
A window has an ion exchange substrate with a top surface. To improve robustness, the top surface has a polycrystalline aluminum oxide film formed from a plurality of crystals. At least 95% of the plurality of crystals in the aluminum oxide film has a largest dimension of no greater than about 10 nanometers. In addition, both the ion exchange substrate and aluminum oxide film are transparent or translucent.
Abstract:
There are provided coated articles that include two or more infrared (IR) reflecting layers (e.g., of or including NbZr, Nb, NiCr, NiCrMo, and/or a nitride thereof) sandwiched between at least dielectric layers, and/or a method of making the same. The coating may be designed so that the coated articles realize blue glass side reflective coloration in combination with a low glass side visible reflectance, acceptable film side coloration, and low solar factor (SF) and/or a low solar heat gain coefficient (SHGC). Such coated articles may be used in the context of monolithic windows, insulating glass (IG) window units, laminated windows, and/or other suitable applications, and may optionally be heat treated (e.g., thermally tempered) in certain instances.
Abstract:
Embodiments of this disclosure pertain to articles that exhibit scratch-resistance and improved optical properties. In some examples, the article exhibits a color shift of about 2 or less, when viewed at an incident illumination angle in the range from about 0 degrees to about 60 degrees from normal under an illuminant. In one or more embodiments, the articles include a substrate, and an optical film disposed on the substrate. The optical film includes a scratch-resistant layer and a refractive index gradient. In one or more embodiments, the refractive index includes a refractive index that increases from a first surface at the interface between the substrate and the optical film to a second surface. The refractive index gradient may be formed from a compositional gradient and/or a porosity gradient.
Abstract:
Disclosed herein are systems, methods, and apparatus for forming a low emissivity panel. In various embodiments, a partially fabricated panel may be provided. The partially fabricated panel may include a substrate, a reflective layer formed over the substrate, and a top dielectric layer formed over the reflective layer such that the reflective layer is formed between the substrate and the top dielectric layer. The top dielectric layer may include tin having an oxidation state of +4. An interface layer may be formed over the top dielectric layer. A top diffusion layer may be formed over the interface layer. The top diffusion layer may be formed in a nitrogen plasma environment. The interface layer may substantially prevent nitrogen from the nitrogen plasma environment from reaching the top dielectric layer and changing the oxidation state of tin included in the top dielectric layer.
Abstract:
An antireflection film including a transparent thin film layer, and a transparent fine uneven layer whose main component is an alumina hydrate, which layers are formed in this order on a surface of a transparent substrate, is provided. The transparent thin film layer includes, in order from the transparent substrate side: an alumina layer; a water barrier layer which has a refractive index lower than the refractive index of the alumina layer and protects the alumina layer from water; and a flat layer whose main component is an alumina hydrate and whose refractive index is lower than the refractive index of the water barrier layer, and the water barrier layer has a thickness of 70 nm or less.