Abstract:
A protective cover includes a flat plate-like protective member, and a scattered ray removal grid, in which the scattered ray removal grid is a grid in which a plurality of transmission parts that transmit the radiation and a plurality of absorption parts that absorb the radiation are alternately arranged and a boundary line between the transmission part and the absorption part extends in one direction, and further, in a case in which, on the imaging surface, a direction connecting a chest wall side and a side opposite to the chest wall is defined as a first direction and a direction orthogonal to the first direction is defined as a second direction, the scattered ray removal grid is disposed at a facing position that faces the imaging surface in a posture in which a direction in which the boundary line extends is parallel to the second direction.
Abstract:
A radiation detector includes a support table, a sensor panel, a fixing member, and a contact member. An attachment surface having an arc surface shape is formed in the support table. The sensor panel has an imaging region in which a plurality of pixels detecting radiation are two-dimensionally arranged. A first surface of the sensor panel is attached to the attachment surface following the arc surface shape. The fixing member partially fixes the first surface to the attachment surface. The contact member comes into contact with a second surface of the sensor panel which is opposite to the first surface to suppress the lifting of the sensor panel from the support table.
Abstract:
A radiation source includes: a plurality of radiation tubes that generates radiations; an interval change mechanism that changes an interval between the radiation tubes; and irradiation direction change mechanisms that change irradiation directions in which the radiation tubes emit the radiations.
Abstract:
A radiographic imaging system includes a portable information terminal 16 and a console 18 which are plural control devices of which each one performs a control relating to imaging of a radiographic image and of which at least one is selectively used; and a terminal control unit 30 of the portable information terminal 16 and a control unit 50 of the console 18 that respectively function as a setting unit that sets, with respect to at least one of usage control devices which is control device to be selectively used, control content based on one usage control device in a case where the number of usage control devices is one, and sets control content based on a combination of plural usage control devices in a case where the number of usage control devices is plural.
Abstract:
In an X-ray imaging system, first X-ray irradiation and second X-ray irradiation are performed in performing X-ray imaging once. A preview producing circuit subjects first image data outputted from a sensor panel after the first X-ray irradiation is finished to binning processing or thinning processing to produce a preview image. The produced image is transmitted through a communication I/F to a console while the sensor panel performs an accumulation operation in the second X-ray irradiation. The preview image is displayed on a monitor of the console in the second X-ray irradiation.
Abstract:
A sensor panel of an electric cassette is provided with detection pixels for AEC to stop X-ray irradiation when an accumulated dose of the X-rays reaches a target dose. A plurality of small blocks each containing a plurality of the detection pixels for calculating the accumulated dose are disposed in each of a plurality of large blocks obtained by dividing an imaging area. The small blocks are disposed so as not to be overlapped with each other in a Y direction.
Abstract:
In capturing an image of a grid by an image detector, a measurement pixel that is not in the position of a specific point having a maximum or minimum value of an output signal is referred to as a first measurement pixel, and a measurement pixel that is in the position of the specific point is referred to as a second measurement pixel. The disposition of the first and second measurement pixels are determined so as to satisfy the following condition: fG/fN≠odd number, wherein fG is a grid frequency and fN is a Nyquist frequency of pixels; and in shifting the grid C times by one pixel, the number of the first measurement pixels is larger than that of the second measurement pixels at any time in the range of a cycle C of a repetition pattern appearing in the image.
Abstract:
A detection panel has a plurality of pixels for accumulating electric charge by receiving X-rays, and a plurality of detection pixels for detecting an X-ray dose in an imaging surface. The detection pixels are disposed periodically with leaving space. A grid, which has X-ray absorbing portions and X-ray transmitting portions alternately and periodically arranged in a first direction, is disposed in a position opposed to the imaging surface. Since an arrangement period of the detection pixels in the first direction is different from an arrangement period of the X-ray absorbing portions, an output value of each detection pixel is distributed and hence the average of the output values has a reduced variation range.
Abstract:
A measurement area selection circuit has an irradiation field determination unit, an object area determination unit, and a measurement area determination unit. The irradiation field determination unit determines an irradiation field of an imaging surface of an FPD. The object area determination unit determines an object area from a comparison result between a first expected received dose of a directly exposed area and dose detection signals of detection pixels situated in the irradiation field. The measurement area determination unit determines a measurement area, which corresponds to a region of interest, from a comparison result between a second expected received dose of the measurement area and the dose detection signals of the detection pixels situated in the irradiation area and the object area. The dose detection signals of the detection pixels situated in the measurement area are used for AEC.
Abstract:
An X-ray imaging system or radiographic imaging system includes a radiation generating apparatus and a radiographic imaging apparatus. An ionization chamber device is external to the radiographic imaging apparatus, for detecting a dose of the radiation transmitted through an object. Dose sensors are incorporated in the radiographic imaging apparatus, for detecting a dose of the radiation transmitted through the object. An exposure control unit is disposed with the radiation generating apparatus, for shutting off application of the radiation from the radiation generating apparatus according to a detection signal from the ionization chamber device or dose sensors. The ionization chamber device is communicably coupled with the radiation generating apparatus. An operating state of the ionization chamber device and dose sensors is acquired by monitoring, so failure of simultaneous inputting of their detection signals to the exposure control unit is prevented.