Abstract:
Provided are a piezoelectric element and an electroacoustic transducer, which can be made thinner while ensuring piezoelectric characteristics in a piezoelectric element. The piezoelectric element includes a common electrode layer, a first piezoelectric layer which consists of a polymer-based piezoelectric composite material containing piezoelectric particles in a matrix containing a polymer material and is provided on one surface of the common electrode layer, a first electrode layer which is provided on a surface of the first piezoelectric layer on a side opposite to the common electrode layer, a first protective layer which is provided on a surface of the first electrode layer on a side opposite to the first piezoelectric layer, a second piezoelectric layer which consists of a polymer-based piezoelectric composite material containing piezoelectric particles in a matrix containing a polymer material and is provided on the other surface of the common electrode layer, a second electrode layer which is provided on a surface of the second piezoelectric layer on a side opposite to the common electrode layer, and a second protective layer which is provided on a surface of the second electrode layer on a side opposite to the second piezoelectric layer.
Abstract:
An object of the present invention is to provide an electroacoustic transducer and an image display device, each of which can be rolled up and does not need a mechanical mechanism and a driving source. The object is accomplished by providing a vibration plate or display element which can be rolled up, and a convex leaf spring having an arc-shaped cross section in the lateral direction and having a concave side disposed facing one surface of the vibration plate or a non-image-displaying surface of the display element.
Abstract:
Provided are an electroacoustic transduction film capable of reproducing a sound with a sufficient sound volume at a high conversion efficiency, a manufacturing method thereof, an electroacoustic transducer, a flexible display, a vocal cord microphone, and a sensor for a musical instrument. The electroacoustic transduction film includes: a polymer composite piezoelectric body in which piezoelectric body particles are dispersed in a viscoelastic matrix formed of a polymer material having viscoelasticity at a normal temperature; two thin film electrodes laminated on both surfaces of the polymer composite piezoelectric body; and two protective layers respectively laminated on the two thin film electrodes, in which an intensity ratio α1=(002) plane peak intensity/((002) plane peak intensity+(200) plane peak intensity) between a (002) plane peak intensity and a (200) plane peak intensity derived from the piezoelectric body particles in a case where the polymer composite piezoelectric body is evaluated by an X-ray diffraction method is more than or equal to 0.6 and less than 1.
Abstract:
The present invention provides an electroacoustic conversion film comprising: a polymeric composite piezoelectric body in which piezoelectric body particles are dispersed in a viscoelastic matrix formed of a polymer material exhibiting viscoelasticity at normal temperature; and two or more electrode pairs, wherein one electrode and the other electrode of each of the electrode pairs are arranged on two opposite main surfaces of the polymeric composite piezoelectric body, respectively, to interpose the polymeric composite piezoelectric body therebetween, and thereby each of the electrode pairs forms an active region.
Abstract:
Provided are an electroacoustic transduction film and an electroacoustic transducer capable of reproducing a sound with a sufficient sound volume and preventing deterioration of appearance. The electroacoustic transduction film includes: a polymer composite piezoelectric body in which piezoelectric body particles are dispersed in a viscoelastic matrix formed of a polymer material having viscoelasticity at a normal temperature; a lower thin film electrode laminated on one principal surface of the polymer composite piezoelectric body; a lower protective layer laminated on the lower thin film electrode; an upper thin film electrode formed on the other principal surface of the polymer composite piezoelectric body; an upper protective layer laminated on the upper thin film electrode; and a colored layer laminated on at least one of a surface layer side of the upper thin film electrode and a surface layer side of the lower thin film electrode.
Abstract:
Provided is an electro-acoustic conversion film that is suitably used for a digital speaker or the like, and that includes a polymer composite piezoelectric body formed by dispersing piezoelectric particles in a viscoelastic matrix formed of a polymer material having viscoelasticity at room temperature, and thin-film electrodes provided on both surfaces of the polymer composite piezoelectric body, and at least one of the thin-film electrodes is divided into a plurality of regions of which an area increases by 2n times (n is a natural number including 0). Thus, a digital speaker in which reverberation or crosstalk between segments is suppressed is obtained.
Abstract:
Provided is an electroacoustic converter film including thin film electrodes provided on both surfaces of a polymeric composite piezoelectric body in which piezoelectric body particles are dispersed in a viscoelastic matrix formed of a polymer material that exhibits viscoelasticity at normal temperature, and protective layers formed on the thin film electrodes. The electroacoustic converter film further includes electrode lead-out metal foils laminated on the thin film electrodes, and the electrode lead-out metal foils allows connection to wiring through soldering when electrodes are led out from the thin film electrodes.
Abstract:
Disclosed is an electroacoustic transduction film suitable for a flexible speaker or the like, in which predetermined acoustic properties are able to be stably exhibited regardless of a bending state. The electroacoustic transduction film includes a polymer composite piezoelectric body in which piezoelectric body particles are dispersed in a viscoelastic matrix formed of a polymer material having viscoelasticity at a normal temperature, and electrode layers interposing the polymer composite piezoelectric body therebetween, and an area fraction of the piezoelectric body particles in a contact surface with respect to the electrode layer is less than or equal to 50%, and thus the object is attained.
Abstract:
An electroacoustic transduction film including a polymer composite piezoelectric body in which piezoelectric body particles are dispersed in a viscoelastic matrix formed of a polymer material having viscoelasticity at a normal temperature, and thin film electrodes respectively laminated on both surfaces of the polymer composite piezoelectric body is included, and two or more of the electroacoustic transduction films are laminated, and a gap between the adjacent electroacoustic transduction films is less than or equal to 3 cm.