Abstract:
A fluid heater includes: a passage member having a passage formed therein; a heater for heating the passage member; a fixing member for fixing the passage member to a fluid control device; and a connection member connected to the passage member so as to allow fluid to flow into the passage member. The passage has a helical shape.
Abstract:
A concentration measuring device 100 comprises: a measurement cell 4 having a flow path, a light source 1, a photodetector 7 for detecting light emitted from the measurement cell, and an arithmetic circuit 8 for calculating light absorbance and concentration of a fluid to be measured on the basis of an output of the photodetector, the measurement cell includes a cell body, a window portion 3 fixed to the cell body so as to contact the flow path, and a reflective member 5 for reflecting light incident on the measurement cell through the window portion, the window portion is fixed to the cell body 40 by a window holding member 30 via a gasket 15, an annular sealing protrusion 15a is provided on a first surface of the gasket for supporting the window portion, and an annular sealing protrusion 42a is also provided on a support surface 42 of the cell body for supporting the second surface opposite to the first surface of the gasket.
Abstract:
A gasket includes a thick portion providing a first face seal and a thin portion providing a second face seal. A fluid coupling has an annular gasket housing recess that includes a wide portion for housing the thick portion of the gasket and a narrow portion for housing the thin portion of the gasket.
Abstract:
An inline concentration measurement device comprises: a measurement cell main body with a gas flow path formed; a light incident part with a window member connected to the main body; and a light receiving part with a window member connected to the main body, wherein the gas flow path includes a gas flow path for an optical path extending straight between the window members of the light incident part and the light receiving part, a first communication part making a gas inlet formed in the main body communicate with the gas flow path part for the optical path, and a second communication part making a gas outlet formed in the main body communicate with the gas flow path part for the optical path, and the first communication part obliquely extends from the gas inlet towards the window member of the light incident part.
Abstract:
A multistage piston actuator exerts a driving pressure against a spring pressure into pressure chambers of piston bodies, fitted into a cylinder body, to operate the push rod. Each piston body is combined with a partition fitted into the cylinder body. Each piston body includes a pressure receiving plate portion, and an axial rod and a slidable cylindrical guide portion extending concentrically in opposite directions, the axial rod having an axial air passage connected to the pressure chambers. Each partition includes a base plate portion having a through-hole which receives the axial rod of an adjacent piston body, a large-diameter outermost cylindrical portion fitted into the cylinder body, and a slidable cylindrical guide portion slidably fit-engaged with the slidable cylindrical guide portion of the piston body. The axial rods of each piston body are brought into contact to operate the push rod.
Abstract:
A fastening structure of a brittle-fracturable panel material includes a first fastening flange, a second fastening flange, and a light transmission window panel made of a brittle-fracturable panel material, wherein the light transmission window panel is nipped between the first fastening flange and the second fastening flange, and both fastening flanges are air-tightly fitted and fastened.
Abstract:
This invention is related to an optical-analysis-type raw material fluid density detector including a detector main body and a light oscillation unit and a light detection unit that are provided on the upper surface or the under surface of the detector main body, in which the detector main body has at least one recess formed in the upper surface and the under surface, a fluid flow path connecting a fluid inlet of the detector main body to the recess, a fluid flow path connecting the recesses to each other, and a fluid flow path connecting the recess to a fluid outlet of the detector main body; the light oscillation unit is disposed in the recess that is closest to the inlet; and light detection units are disposed in the remaining recesses.