Abstract:
To provide a fiber laser apparatus capable of detecting a failure of an optical fiber within a wide range of the apparatus with an inexpensive configuration. The fiber laser apparatus 100 has a plurality of fiber laser units 110, a combiner 120 operable to optically combine output laser beams outputted from the fiber laser unit 110 to generate a combined laser beam, a laser emission portion 130 operable to emit the combined laser beam, output laser beam power detection parts 170 operable to detect a power of an output laser beam of each of the fiber laser units 110, a combined laser beam power detection part 140 operable to detect a power of the combined laser beam, and a failure detection part 160 operable to compare the total of detected powers of the output laser beams (total laser beam power) with the detected power of the combined laser beam and determine that a failure has occurred in the fiber laser unit 110 when a ratio of the power of the combined laser beam to the total laser beam power becomes lower than a predetermined threshold T.
Abstract:
A fiber laser system, includes: N fiber laser units that generates respective laser beams, where N≥2; an output combiner that: combines the respective laser beams, and generates output light including, as the respective laser beams, laser beams different from each other in terms of NA power cumulative distribution; and a control unit that sets a power of each of the respective laser beams such that an upper limit NA corresponding to each of not more than (N−1) predetermined power cumulative rate(s) is equal to a specified value for the output light.
Abstract:
A laser processing apparatus includes a process laser light source, a first optical system, a pulse laser light source, a second optical system, and an optical detection portion. The process laser light source generates a process laser beam having a continuous energy density during a certain period of time. The first optical system directs the process laser beam to a surface of a workpiece. The pulse laser light source generates a pulse laser beam having an energy density with a peak value that is higher than the energy density of the process laser beam. The second optical system directs the pulse laser beam to a process portion of the workpiece. The optical detection portion detects plasma light produced at the process portion of the workpiece.
Abstract:
A fiber laser system, includes: N fiber laser units that generates respective laser beams, where N≥2; an output combiner that: combines the respective laser beams, and generates output light including, as the respective laser beams, laser beams different from each other in terms of NA power cumulative distribution; and a control unit that sets a power of each of the respective laser beams such that an upper limit NA corresponding to each of not more than (N−1) predetermined power cumulative rate(s) is equal to a specified value for the output light.
Abstract:
To provide a fiber laser apparatus capable of detecting a failure of an optical fiber within a wide range of the apparatus with an inexpensive configuration. The fiber laser apparatus 100 has a plurality of fiber laser units 110, a combiner 120 operable to optically combine output laser beams outputted from the fiber laser unit 110 to generate a combined laser beam, a laser emission portion 130 operable to emit the combined laser beam, output laser beam power detection parts 170 operable to detect a power of an output laser beam of each of the fiber laser units 110, a combined laser beam power detection part 140 operable to detect a power of the combined laser beam, and a failure detection part 160 operable to compare the total of detected powers of the output laser beams (total laser beam power) with the detected power of the combined laser beam and determine that a failure has occurred in the fiber laser unit 110 when a ratio of the power of the combined laser beam to the total laser beam power becomes lower than a predetermined threshold T.