Abstract:
An embodiment method for wireless communication includes grouping a plurality of user equipments (UEs) wirelessly coupled to a cellular base station (BS) into a UE cluster to function as a Wi-Fi virtual station (V-STA), and communicating with an access point (AP) to contend for a Wi-Fi transmission opportunity (TXOP) for the V-STA. In a further embodiment, the cellular BS contends for the TXOP on behalf of the UE cluster using a carrier sense multiple access with collision avoidance (CSMA-CA) procedure. In an alternative embodiment, one UE in the UE cluster is selected as a leader UE to contend for the TXOP on behalf of the UE cluster using a CSMA-CA procedure.
Abstract:
A method of performing authentication involves receiving, by a station, an initiation frame and transmitting, by the station, an authentication request. The authentication request includes an extensible authentication protocol (EAP) over local area network (LAN) (EAPOL) Start and security parameters for a fast initial link setup (FILS) handshake.
Abstract:
A method for transmitting a frame includes generating an omni portion of the frame, the omni portion including a non-beamformed long training field and a signal field, the non-beamformed long training field including channel estimation information used to decode the signal field, the non-beamformed long training field configured to be transmitted through one of multiple antennas and multiple streams. The method also includes generating a multi-stream portion of the frame, the multi-stream portion including a data field and a multi-stream long training field, the multi-stream long training field including station-specific decoding information for station-specific data in the data field. The method further includes applying a beamforming indicator to the signal field of the omni portion, and transmitting the frame.
Abstract:
System and method embodiments are provided for provisioning a quality of cellular user experience (QoE) or quality of service (QoS) specified device in a wireless local area network (LAN). The embodiments enable a QoE or QoS specified by a service agreement for a device to be maintained during periods when the device is transmitting data to and receiving data from the wireless LAN (e.g., a WiFi hotspot). In an embodiment, a method includes determining that at least one QoS-sensitive device is communicating with a wireless LAN access point (AP), reserving a contention free period (CFP) in a superframe for the at least one QoS-sensitive device to communicate with the AP, and allocating a contention period (CP) in the superframe for non-QoS-sensitive devices to communicate with the AP, wherein the non-QoS-sensitive devices are prohibited from transmitting during the CFP.
Abstract:
System and method embodiments are provided for high efficiency wireless communications. In an embodiment, a method in a network component for transmitting a frame of two different fast Fourier transform (FFT) sizes includes generating a frame, wherein the frame comprises orthogonal frequency-division multiplexing (OFDM) symbols in two different FFT sizes, wherein the frame comprises a first portion and a second portion, wherein the first portion comprises a first FFT size and the second portion comprises a second FFT size; and transmitting the frame during a single transmission opportunity.
Abstract:
A method for transmitting a frame includes generating an omni portion of the frame, the omni portion including a non-beamformed long training field and a signal field, the non-beamformed long training field including channel estimation information used to decode the signal field, the non-beamformed long training field configured to be transmitted through one of multiple antennas and multiple streams. The method also includes generating a multi-stream portion of the frame, the multi-stream portion including a data field and a multi-stream long training field, the multi-stream long training field including station-specific decoding information for station-specific data in the data field. The method further includes applying a beamforming indicator to the signal field of the omni portion, and transmitting the frame.
Abstract:
System and method embodiments are provided to improve offloading traffic from mobile operators networks via a WiFi network. The embodiments also include schemes to offload traffic between WiFi networks. The embodiments include a network component comprising a WiFi management entity (WiME) configured to serve as an anchor point for a user device at a WiFi network and communicate with a management entity at a wireless network using OpenFlow protocol to handle a plurality of control and mobility functionalities for traffic in the WiFi network, wherein the control and mobility functionalities include offloading traffic for the user device from the wireless network to the WiFi network.
Abstract:
Embodiments are provided for implementing a CSMA-CA half window scheme in 802.11 networks or other suitable wireless networks that could benefit from such scheme. The half window scheme improves a back-off time calculation by adding a probability prediction factor. The back-off time is part of a delay time in accessing a wireless transmission medium by a station (STA). The probability prediction factor is used to adjust a contention widow (CW) used to calculate the back-off time, based on the STA's medium access probability. The STA splits the CW into two at least half windows and then chooses one of the windows according to the window's information gain for the probability prediction. The selected window is used to select a random number for the back-off time. The improved back-off time calculation reduces contention between STAs in accessing the medium.
Abstract:
System and method embodiments are included to provide various degrees of time allocation fairness to users using varying target transmission opportunity (TXOP) values. In one embodiment, a method for promoting various degrees of fairness for users in a wireless network includes assigning a target TXOP value for one or more users in the wireless network, wherein the target TXOP value indicates a number of time units for transmissions to be met on average over time by the one or more users, and transmitting the target TXOP value to the one or more users. In another embodiment, a method includes receiving a TXOP value from the wireless network, wherein the target TXOP value indicates a number of time units allocated for transmissions, and transmitting traffic over a plurality of time periods that have an average duration about equal to the number of time units.
Abstract:
In one embodiment, a collaborative service set (CSS) includes a controller access point (AP) configured to be associated with a first plurality of stations and a first member AP, where the first member AP is associated with a second plurality of stations, where the controller AP is configured to coordinate transmissions between the first member AP and the second plurality of stations with transmissions between the controller AP and the first plurality of stations, where the controller AP and the first member AP are configured to transmit messages simultaneously.