Abstract:
A file storage system may be implemented by coordinating non-exhaustible and exhaustible storage devices. The exhaustible storage devices may be lower grade flash based storage devices. The non-exhaustible storage devices may be storage devices based on magnetic recording mechanisms or higher grade flash storage. The file storage system may store received content items on the exhaustible storage devices. The file storage system may additionally store metadata for the content items and/or the file storage system on the non-exhaustible storage devices. During operation, the file storage system may globally optimize the content items on the exhaustible storage devices such that more heavily accessed items are moved to exhaustible storage devices that have experienced relatively few data operations. The file storage system can move less frequently accessed content items to exhaustible storage devices that have experienced a relatively large number of data operations. As such, the operation lifetime of the exhaustible storage devices as a whole can be prolonged.
Abstract:
In a data center, components of a server are located on a different circuit board than the processor. For example, components such as a network interface controller, storage devices, power supply, and memory are located on one or more circuit boards different than the circuit board on which the processor is located. Having server components on different circuit boards allows the components to be updated on different schedules, reducing resource consumption caused from tying component updates to processor updates. Locating server components on separate server boards also allows virtualization of server components included in a server rack.
Abstract:
A file storage system may be implemented by coordinating non-exhaustible and exhaustible storage devices. The exhaustible storage devices may be lower grade flash based storage devices. The non-exhaustible storage devices may be storage devices based on magnetic recording mechanisms or higher grade flash storage. The file storage system may store received content items on the exhaustible storage devices. The file storage system may additionally store metadata for the content items and/or the file storage system on the non-exhaustible storage devices. During operation, the file storage system may globally optimize the content items on the exhaustible storage devices such that more heavily accessed items are moved to exhaustible storage devices that have experienced relatively few data operations. The file storage system can move less frequently accessed content items to exhaustible storage devices that have experienced a relatively large number of data operations. As such, the operation lifetime of the exhaustible storage devices as a whole can be prolonged.