摘要:
An ultracapacitor that includes an energy storage cell immersed in an electrolyte and disposed within an hermetically sealed housing, the cell electrically coupled to a positive contact and a negative contact, wherein the ultracapacitor is configured to output electrical energy within a temperature range between about 80 degrees Celsius to about 210 degrees Celsius. Methods of fabrication and use are provided.
摘要:
An ultracapacitor that includes an energy storage cell immersed in an advanced electrolyte system and disposed within a hermetically sealed housing, the cell electrically coupled to a positive contact and a negative contact, wherein the ultracapacitor is configured to output electrical energy within a temperature range between about −40 degrees Celsius to about 210 degrees Celsius. Methods of fabrication and use are provided.
摘要:
A downhole power system is provided that includes an energy storage adapted to operate at high temperatures, and a modular signal interface device that serves to control the energy storage component as well as offer a means of data logging at high temperatures. The controller is fabricated from pre-assembled components that may be selected for various combinations to provide desired functionality. The energy storage may include at least one ultracapacitor.
摘要:
An ultracapacitor that includes an energy storage cell immersed in an advanced electrolyte system and disposed within a hermetically sealed housing, the cell electrically coupled to a positive contact and a negative contact, wherein the ultracapacitor is configured to output electrical energy within a temperature range between about −40 degrees Celsius to about 210 degrees Celsius. Methods of fabrication and use are provided.
摘要:
An ultracapacitor that includes an energy storage cell immersed in an advanced electrolyte system and disposed within a hermetically sealed housing, the cell electrically coupled to a positive contact and a negative contact, wherein the ultracapacitor is configured to output electrical energy within a temperature range between about −40 degrees Celsius to about 210 degrees Celsius. Methods of fabrication and use are provided.
摘要:
A housing for an energy storage cell includes an interior which provides beneficial properties to fabricators of the cell. The cell may be hermetically sealed by conventional laser welding techniques.
摘要:
Disclosed herein is a method for fabricating an ultracapacitor, the method comprising disposing an energy storage cell comprising energy storage media within a housing; and constructing the ultracapacitor to operate within a temperature range between about 80 degrees Celsius to about 210 degrees Celsius.
摘要:
Disclosed herein is a method for fabricating an ultracapacitor, the method comprising disposing an energy storage cell comprising energy storage media within a housing; and constructing the ultracapacitor to operate within a temperature range between about 80 degrees Celsius to about 210 degrees Celsius.
摘要:
An ultracapacitor that includes an energy storage cell immersed in an electrolyte and disposed within an hermetically sealed housing, the cell electrically coupled to a positive contact and a negative contact, wherein the ultracapacitor is configured to output electrical energy within a temperature range between about 80 degrees Celsius to about 210 degrees Celsius. Methods of fabrication and use are provided.
摘要:
An ultracapacitor that includes an energy storage cell immersed in an advanced electrolyte system and disposed within a hermetically sealed housing, the cell electrically coupled to a positive contact and a negative contact, wherein the ultracapacitor is configured to output electrical energy within a temperature range between about −40 degrees Celsius to about 210 degrees Celsius. Methods of fabrication and use are provided.