CHIP FORM ULTRACAPACITOR
    1.
    发明公开

    公开(公告)号:US20230307193A1

    公开(公告)日:2023-09-28

    申请号:US18142915

    申请日:2023-05-03

    摘要: An energy storage apparatus suitable for mounting on a printed circuit board using a solder reflow process is disclosed. In some embodiments, the apparatus includes: a sealed housing body (e.g., a lower body with a lid attached thereto) including a positive internal contact and a negative internal contact (e.g., metallic contact pads) disposed within the body and each respectively in electrical communication with a positive external contact and a negative external contact. Each of the external contacts provide electrical communication to the exterior of the body, and may be disposed on an external surface of the body. An electric double layer capacitor (EDLC) (also referred to herein as an “ultracapacitor” or “supercapacitor”) energy storage cell is disposed within a cavity in the body including a stack of alternating electrode layers and electrically insulating separator layers. An electrolyte is disposed within the cavity and wets the electrode layers. A positive lead electrically connects a first group of one or more of the electrode layers to the positive internal contact; and a negative lead electrically connects a second group of one or more of the electrode layers to the negative internal contact.

    ULTRACAPACITORS WITH HIGH FREQUENCY RESPONSE

    公开(公告)号:US20220246364A1

    公开(公告)日:2022-08-04

    申请号:US17688211

    申请日:2022-03-07

    发明人: Nicolo Brambilla

    摘要: An electric double layer capacitor (EDLC) is disclosed including: a first electrode including a first current collector and first plurality of carbon nanotubes (CNTs) disposed substantially directly upon the first current collector; a second electrode comprising a second current collector and second plurality of CNTs disposed substantially directly upon the second current collector; and an electrolyte disposed between and in contact with (e.g., wetting) the first and second electrodes. In some embodiments, the EDLC is configured to have a capacitive frequency window comprising about 1 Hz to about 50 Hz.

    THERMAL INTERFACE MATERIALS
    6.
    发明申请

    公开(公告)号:US20210389062A1

    公开(公告)日:2021-12-16

    申请号:US17406335

    申请日:2021-08-19

    摘要: A thermal interface material is disclosed. The material includes: a sheet extending between a first major surface and a second major surface, the sheet including: a base material; and a filler material embedded in the base material. The base material may include anisotropically oriented thermally conductive elements. In some embodiments, the thermally conductive elements are preferentially oriented along a primary direction from the first major surface towards the second major surface to promote thermal conduction though the sheet along the primary direction. In some embodiments, the base material is substantially free of silicone. In some embodiments, the thermal conductivity of the sheet along the primary direction is at least 20 W/mK, 30 W/mK, 40 W/mK, 50 W/mK, 60 W/mK, 70 W/mK, 80 W/mK, 90 W/mK, 100 W/mK, or more.

    CHIP FORM ULTRACAPACITOR
    8.
    发明申请

    公开(公告)号:US20200303137A1

    公开(公告)日:2020-09-24

    申请号:US16753553

    申请日:2018-10-03

    摘要: An energy storage apparatus suitable for mounting on a printed circuit board using a solder reflow process is disclosed. In some embodiments, the apparatus includes: a sealed housing body (e.g., a lower body with a lid attached thereto) including a positive internal contact and a negative internal contact (e.g., metallic contact pads) disposed within the body and each respectively in electrical communication with a positive external contact and a negative external contact. Each of the external contacts provide electrical communication to the exterior of the body, and may be disposed on an external surface of the body. An electric double layer capacitor (EDLC) (also referred to herein as an “ultracapacitor” or “supercapacitor”) energy storage cell is disposed within a cavity in the body including a stack of alternating electrode layers and electrically insulating separator layers. An electrolyte is disposed within the cavity and wets the electrode layers. A positive lead electrically connects a first group of one or more of the electrode layers to the positive internal contact; and a negative lead electrically connects a second group of one or more of the electrode layers to the negative internal contact.