摘要:
Information related to electronic design automation may be exchanged in a secure manner. Information deemed sensitive and otherwise worthy of protection may be secured by methods such as encryption, obfuscation and other security measures. The secured information may be processed without revealing at least some of the secured information. For instance, rule files related to integrated circuit manufacturability may be selectively annotated to indicate portions thereof deserving of protection. An encryption tool may be used to secure the information related to electronic design automation. An electronic design automation tool may then unlock and use the secured information without revealing the same. In one aspect, such access or secure use of the information may depend on one or more conditions being met (e.g., a time period or a number of uses or accesses). For instance, the tool may be a physical verification tool capable of verifying whether any of the one or more integrated circuit layouts may violate one or more of the secured rules.
摘要:
Electronic data can be exchanged in a secure manner. Information deemed sensitive and otherwise worthy of protection may be secured by methods such as encryption, obfuscation and other security measures. The secured information can be processed without revealing at least some of the secured information. For instance, rule files related to integrated circuit manufacturability may be selectively annotated to indicate portions thereof deserving of protection. An encryption tool can be used to secure the information. A system can then unlock and use the secured information without revealing the same. In one desirable aspect, information can be encrypted or decrypted using a key, the key being generated based on licensing information associated with a software application.
摘要:
Described herein are methods and systems for secure exchange of information related to electronic design automation. Information deemed sensitive and otherwise worthy of protection may be secured by methods such as encryption, obfuscation and other security measures. The secured information may be provided to an electronic design automation tool for processing without revealing at least some of the secured information. For instance, rule files related to integrated circuit manufacturability may be selectively annotated to indicate portions thereof deserving of protection. An encryption tool may be used to secure the information so indicated and generate a file comprising secured information related to electronic design automation. An electronic design automation tool may then unlock and use the secured information without revealing the same. For instance, the tool may be a physical verification tool capable of verifying whether any of the one or more integrated circuit layouts may violate one or more of the secured rules. An error report may be generated without revealing the secured rules.
摘要:
Described herein are methods and systems for secure exchange of information related to electronic design automation. Information deemed sensitive and otherwise worthy of protection may be secured by methods such as encryption, obfuscation and other security measures. The secured information may be provided to an electronic design automation tool for processing without revealing at least some of the secured information. For instance, rule files related to integrated circuit manufacturability may be selectively annotated to indicate portions thereof deserving of protection. An encryption tool may be used to secure the information so indicated and generate a file comprising secured information related to electronic design automation. An electronic design automation tool may then unlock and use the secured information without revealing the same. For instance, the tool may be a physical verification tool capable of verifying whether any of the one or more integrated circuit layouts may violate one or more of the secured rules. An error report may be generated without revealing the secured rules.
摘要:
Techniques are disclosed for optimizing the pattern density in the circuit layout design of a circuit layer. A layer in circuit design is analyzed to define empty regions that can be filled with fill polygons (referred to hereafter as “fill” regions). Next, a pattern of fill polygons is generated. After the fill polygons have been defined, the layout design for the layer is divided into separate areas or “windows,” and a target density for each window is determined. Once this target density for the window has been determined, the fill polygons required to most closely approach this target density are generated and added to the circuit layout design. This process may be repeated with progressively different (e.g., smaller) fill polygons, until each window meets or exceeds both the specified minimum density and complies with the specified maximum density gradient. Additionally, some implementations may allow a user to simultaneously optimize the density of multiple layers of a circuit by adding fill polygons to multiple layers of a circuit design simultaneously. Representations of sections of a multilayer fill structure will then be added to corresponding layers the circuit design until a specified target density is met.
摘要:
Techniques are provided for optimizing the pattern density in the circuit layout design of a circuit layer. A layer in circuit design is analyzed to define fill regions that can be filled with fill polygons A pattern of fill polygons also is generated, to fill the fill regions. The layout design for the layer then is divided into separate areas or “windows,” and a target density for each window is determined. More particularly, each window is analyzed to determine a target density for the window that will satisfy specified density constraint values, such as a minimum density constraint, a maximum density constraint, or a maximum density gradient constraint. In some implementations, the target density will be the smallest density that will comply with each of the specified density value constraints. Once the target density for the window has been determined, the fill polygons required to most closely approach this target density are selected and added to the circuit layout design. With some implementations, this process may be repeated for fill polygons of different sizes or shapes.
摘要:
Techniques are disclosed for modifying an existing microdevice design to improve its manufacturability. With these techniques, a designer receives manufacturing criteria associated with data in a design. The associated design data then is identified and provided to the microdevice designer, who may choose to modify the design based upon the manufacturing criteria. In this manner, the designer can directly incorporate manufacturing criteria from the foundry in the original design of the microdevice.
摘要:
Techniques are disclosed for modifying an existing microdevice design to improve its manufacturability. With these techniques, a designer receives manufacturing criteria associated with data in a design. The associated design data then is identified and provided to the microdevice designer, who may choose to modify the design based upon the manufacturing criteria. In this manner, the designer can directly incorporate manufacturing criteria from the foundry in the original design of the microdevice.
摘要:
A method of calculating electrical interactions of circuit elements in an integrated circuit layout without flattening the entire database that describes the layout. In one embodiment, a hierarchical database is analyzed and resistance and capacitance calculations made for a repeating pattern of elements are re-used at each instance of the repeated pattern and adjusted for local conditions. In another embodiment, a circuit layout is converted into a number of tiles, wherein the resistance and capacitance calculations made for the circuit elements in the center and a boundary region of the tiles are computed separately and combined. Environmental information that affects electrical interaction between circuit elements in different levels of hierarchy is calculated at a lower level of hierarchy so that such calculations do not need to be made for each placement of a repeated cell and so that not all interacting elements need to be promoted to the same hierarchy level to compute the electrical interactions.
摘要:
In a data processing system, uniformly structured objects are indifferently mixed in object memory with object pointers. The objects address prologues of object execution sequences in memory. The object pointers address other objects. The objects are properly evaluated whether directly or indirectly addressed. An interpreter pointer selectively points to or addresses objects or object pointers.When an object is directly addressed by the interpreter pointer, the addressee of the object's addressee in memory is addressed which initiates the object execution sequence.When an object is indirectly addressed, the pointer addresses an object pointer. The object pointer addresses an object. The object's addressee in memory is addressed which initiates the object execution process.