Abstract:
A fiber tuft feeder includes a first chute; an opening roller supported at the outlet end of the first chute for receiving fiber tufts therefrom; a second chute extending downwardly from the opening roller; a densifying air stream generating arrangement for introducing a densifying air stream into the second chute to compress the fiber tufts therein; and a guide arrangement for orienting the densifying air stream toward the opening roller to combine the densifying air stream with an additional air stream generated by the opening roller by rotation thereof, for aligning the combined air stream in a direction of the second chute and for directing the combined air stream away from the opening roller into the second chute. There is further provided an arrangement for discharging fiber material from the second chute through an outlet thereof.
Abstract:
A fiber tuft feeder includes a first chute; a feed roller supported at the outlet end of the first chute; an opening roller adjoining the feed roller and being supported below the feed roller and receiving fiber tufts therefrom; a second chute extending downwardly from the opening roller; a densifying air stream generating arrangement for introducing an air stream into the second chute to densify the fiber tufts therein; and a guide arrangement for directing the densifying air stream to flow consecutively along the feed roller and the opening roller.
Abstract:
A roll for advancing fiber material has a roll surface provided with a sawtooth clothing which includes a plurality of teeth separated from one another by respective tooth gaps each having a gap bottom. Each tooth has a frontal flank oriented in a direction of roll rotation and a tooth point. Each tooth having a tooth height h.sub.2 measured from the roll surface to the tooth point and a tooth gap height h.sub.3 measured from the tooth gap bottom to the tooth point. The tooth height h.sub.2 and the tooth gap height h.sub.3 are small for defining a small fill volume between teeth. Each tooth has a back angle .gamma. having a magnitude of at least approximately 90.degree. and further has a large tooth division t and a large pitch P for defining a large open space about the teeth.
Abstract:
An apparatus for feeding fiber tufts to a fiber processing textile machine includes a feed chute having upper and lower ends; a densifying air stream generating arrangement for introducing an air stream into the feed chute to densify the fiber tufts therein; a screen forming part of a lower region of the feed chute for separating the air stream from the fiber tufts; an air removal hood immediately adjoining the screen externally of the feed chute; and an arrangement for forcing the air stream through the screen openings out of the feed chute into and through the air removal hood.
Abstract:
An apparatus for advancing a sliver and sensing thickness variations thereof in a fiber processing machine includes a tongue-and-groove roll pair composed of a tongue roll and a groove roll. The groove roll is radially fixedly supported and has a circumferentially extending groove including a groove bottom. The tongue roll projects into the groove and defines, with the groove roll, a nip through which the sliver passes for being compressed and advanced by the tongue-and-groove roll pair. The apparatus further has a sensing device including a biased, movably supported sensor element projecting into the groove of the groove roll and cooperating with the groove bottom upstream of the nip as viewed in a direction of sliver advance for pressing the sliver against the groove bottom and for undergoing excursions in response to thickness variations of the sliver passing between the sensor element and the groove bottom.
Abstract:
A regulated drawing unit for drawing fiber material includes an inlet through which the fiber material passes before being drafted; an outlet through which the fiber material passes after being drafted; a first arrangement defining a drawing field including drawing roll pairs spaced from one another in a direction of advance of fiber material; a drive system operatively connected to at least one of the drawing roll pairs for setting an extent of draft of the drawing field; a programmable control system having a memory and being connected to the drive system; a sensor for determining the mass of the fiber material running through a location and for applying signals to the memory; and a second arrangement for deriving information from data stored in the memory for adjusting the roll pair. The second arrangement includes a third arrangement for forming, from the information, a spectrogram of the fiber material and for evaluating properties of the spectrogram to use such properties in adjusting the roll pair.
Abstract:
A fiber processing machine includes a fiber processing roll carrying a roll clothing on a circumferential surface thereof; an operationally substantially stationary carding segment carrying a segment clothing for cooperating with the roll clothing along a circumferential length portion thereof; a strip-supporting component fixedly held on a machine frame and having a supporting surface; and a segment-supporting strip extending circumferentially along the roll and being held on the supporting surface of the strip-supporting component. The segment-supporting strip has an upper surface supporting the carding segment at opposite end portions thereof and a lower surface opposite the upper surface. A radial distance between the clothing points of the segment clothing and the clothing points of the roll clothing is determined and is changeable by the shape and/or the position of the segment-supporting strip.
Abstract:
A method of measuring fiber material while being processed by fiber processing components of a carding machine, includes the following steps: measuring fiber length and nep number at an outlet of the carding machine; applying measured values of the fiber length and nep number to a control and regulating device; forming, in the control and regulating device, optimized machine setting data for the fiber length and the nep number; and applying the optimized machine setting data to at least one of the fiber processing components affecting fiber length and nep number.
Abstract:
A method of measuring fiber while being processed by a fiber processing machine, includes the following steps: measuring the length of fiber at an inlet of the fiber processing machine; measuring the length of fiber at an outlet of the fiber processing machine; and forming a difference between the values measured at the inlet and the values measured at the outlet for determining an extent of shortening to which the fiber is subjected as the fiber passes through the fiber processing machine.
Abstract:
A carding machine includes a main carding cylinder having a cylinder axis and a cylinder clothing; and traveling flats cooperating with the main carding cylinder along a circumferential length portion thereof. The traveling flats include a plurality of flat bars each having a flat bar clothing cooperating with the cylinder clothing; and a drive for moving the flat bars in unison in an endless path having a working leg in which the flat bar clothings cooperate with the cylinder clothing and a return leg. The working leg extends circumferentially about a portion of the main carding cylinder. The carding machine further has a flexible bend having a convex surface and being supported on the machine frame laterally of the main carding cylinder; and a slide guide supported on the flexible bend. The slide guide has a convex surface supporting the flat bars for sliding motion thereon along the working leg. The radial position of the convex surface of the slide guide relative to the cylinder axis determines the radial clothing point distance between the clothing points of the flat bar clothings and the clothing points of the cylinder clothing. Further, an adjusting device is provided for radially displacing the slide guide such that the radial clothing point distance remains uniform at all locations along the working leg.