Abstract:
A method of transmitting data may include converting a stream of serial data bits into a set of parallel quadrature amplitude modulation (QAM) symbols. The method may additionally include applying a partial discrete Fourier transform-spread technique to transform a block of low-frequency subcarriers into a single-carrier QAM signal. The single-carrier QAM signal may bear information of a first subset of QAM symbols from the set of parallel QAM symbols. The method may additionally include transforming one or more remaining QAM symbols to form one or more subcarriers. Each of the one or more subcarriers may bear information of a corresponding QAM symbol from the one or more remaining QAM symbols. The method may additionally include generating a hybrid signal that includes the single-carrier QAM signal and the one or more subcarriers. The method may additionally include transmitting the hybrid signal.
Abstract:
A method of blind tap coefficient adaptation includes receiving a digital data signal including random digital data, equalizing a first portion of the digital data signal using a first set of predetermined tap coefficients and a second portion of the digital data signal using a second set of predetermined tap coefficients. The method includes generating a first eye diagram and a second eye diagram from a first portion and a second portion of an equalized signal, respectively. The first eye diagram is compared with the second eye diagram to determine which of the sets of predetermined tap coefficients results in a data signal having a higher signal quality. The method includes inputting to an equalizer as an initial set of tap coefficients the first set of predetermined tap coefficients or the second set of predetermined tap coefficients according to the determination.
Abstract:
In some examples, a transmit assembly is described that may include a first optical transmitter, a second optical transmitter, and a polarizing beam combiner. The first optical transmitter may be configured to emit a first optical data signal centered at a first frequency. The second optical transmitter may be configured to emit a second optical data signal centered at a second frequency offset from the first frequency by a nominal offset n. The polarizing beam combiner may be configured to generate a dual carrier optical data signal by polarization interleaving the first optical data signal with the second optical data signal. An output of the polarizing beam combiner may be configured to be communicatively coupled via an optical transmission medium to a polarization-insensitive receive assembly.
Abstract:
An example embodiment includes optical receiver that includes a polarization beam splitter (PBS), a polarization controller, and a forward error correction (FEC). The PBS is configured to split a received optical signal having an unknown polarization state into two orthogonal polarizations (x′-polarization and y′-polarization). The polarization controller includes no more than two couplers and no more than two phase shifters per wavelength channel of the x′-polarization and the y′-polarization. The polarization controller is configured to demultiplex the x′-polarization and the y′-polarization into a first demultiplexed signal having an first polarization on which a data signal is modulated and a second demultiplexed signal having a second, orthogonal polarization on which a pilot carrier oscillator signal is encoded. The FEC decoder module is configured to correct a burst of errors resulting from resetting one of the phase shifters based on error correction code (ECC) data encoded in the data signal.
Abstract:
An example embodiment includes optical receiver that includes a polarization beam splitter (PBS), a polarization controller, and a forward error correction (FEC). The PBS is configured to split a received optical signal having an unknown polarization state into two orthogonal polarizations (x′-polarization and y′-polarization). The polarization controller includes no more than two couplers and no more than two phase shifters per wavelength channel of the x′-polarization and the y′-polarization. The polarization controller is configured to demultiplex the x′-polarization and the y′-polarization into a first demultiplexed signal having an first polarization on which a data signal is modulated and a second demultiplexed signal having a second, orthogonal polarization on which a pilot carrier oscillator signal is encoded. The FEC decoder module is configured to correct a burst of errors resulting from resetting one of the phase shifters based on error correction code (ECC) data encoded in the data signal.
Abstract:
A method of transmitting data may include converting a stream of serial data bits into a set of parallel quadrature amplitude modulation (QAM) symbols. The method may additionally include applying a partial discrete Fourier transform-spread technique to transform a block of low-frequency subcarriers into a single-carrier QAM signal. The single-carrier QAM signal may bear information of a first subset of QAM symbols from the set of parallel QAM symbols. The method may additionally include transforming one or more remaining QAM symbols to form one or more subcarriers. Each of the one or more subcarriers may bear information of a corresponding QAM symbol from the one or more remaining QAM symbols. The method may additionally include generating a hybrid signal that includes the single-carrier QAM signal and the one or more subcarriers. The method may additionally include transmitting the hybrid signal.
Abstract:
In some examples, a transmit assembly is described that may include a first optical transmitter, a second optical transmitter, and a polarizing beam combiner. The first optical transmitter may be configured to emit a first optical data signal centered at a first frequency. The second optical transmitter may be configured to emit a second optical data signal centered at a second frequency offset from the first frequency by a nominal offset n. The polarizing beam combiner may be configured to generate a dual carrier optical data signal by polarization interleaving the first optical data signal with the second optical data signal. An output of the polarizing beam combiner may be configured to be communicatively coupled via an optical transmission medium to a polarization-insensitive receive assembly.
Abstract:
A method of transmitting data may include receiving feedback information that includes effective channel bandwidths, signal-to-noise ratios (SNRs) associated with multiple optical channels on an optical link, and individual SNRs associated with subcarriers on each optical channel. The method may include determining multiple subcarrier power allocation schemes based on the feedback information. Each subcarrier power allocation scheme may be associated with a corresponding optical channel from the multiple optical channels and may be configured to allocate a signal power among subcarriers configured to transmit on the corresponding optical channel. The method may include determining, based on the feedback information, an optical power allocation scheme configured to allocate an optical power among the multiple optical channels. The method may include transmitting data on the multiple optical channels based on the multiple subcarrier power allocation schemes and the optical power allocation scheme.
Abstract:
A method of blind tap coefficient adaptation includes receiving a digital data signal including random digital data, equalizing a first portion of the digital data signal using a first set of predetermined tap coefficients and a second portion of the digital data signal using a second set of predetermined tap coefficients. The method includes generating a first eye diagram and a second eye diagram from a first portion and a second portion of an equalized signal, respectively. The first eye diagram is compared with the second eye diagram to determine which of the sets of predetermined tap coefficients results in a data signal having a higher signal quality. The method includes inputting to an equalizer as an initial set of tap coefficients the first set of predetermined tap coefficients or the second set of predetermined tap coefficients according to the determination.
Abstract:
An example embodiment includes optical receiver that includes a polarization beam splitter (PBS), a polarization controller, and a forward error correction (FEC). The PBS is configured to split a received optical signal having an unknown polarization state into two orthogonal polarizations (x′-polarization and y′-polarization). The polarization controller includes no more than two couplers and no more than two phase shifters per wavelength channel of the x′-polarization and the y′-polarization. The polarization controller is configured to demultiplex the x′-polarization and the y′-polarization into a first demultiplexed signal having an first polarization on which a data signal is modulated and a second demultiplexed signal having a second, orthogonal polarization on which a pilot carrier oscillator signal is encoded. The FEC decoder module is configured to correct a burst of errors resulting from resetting one of the phase shifters based on error correction code (ECC) data encoded in the data signal.