摘要:
The activity sensing pacemaker comprises: a heart pulse sensing device for sensing heart pulses; pulse generating circuitry for generating pacing pulses; activity sensing structure and circuitry for sensing activity/movement of a patient wearing the pacemaker in one or more of three directions/dimensions, x, y, z, and for causing the pulse generating circuitry to generate pacing pulses at a rate/frequency related to the movements sensed; and, control circuitry coupled to the heart pulse sensing device, to the pulse generating circuitry and to the activity sensing structure and circuitry for controlling the pulse generating circuitry in response to the heart pulses sensed or in response to the patient movements sensed, the activity sensing structure and circuitry causing generation of control pulses related to the movements of the patient and the control circuitry including frequency sensing circuitry for sensing the frequency of the control pulses generated and for controlling the rate/frequency of the pacing pulses generated by the pulse generating circuitry relative to the frequency of the control pulses generated by the movements of the patient in one or more directions/dimensions, x, y, z, independent of the duration or amplitude of the control pulses.
摘要:
An implantable cardiac pacer having atrial and ventricular electrodes includes an input/output circuit which can be programmed for use with either unipolar or bipolar pacer leads. The circuit can be reprogrammed by the physician after implant to accommodate physiological changes in the patient or chronic changes in pacer lead characteristics, and can be utilized with single channel or dual channel cardiac pacers.
摘要:
The implantable stimulator in accordance with the principles of the present invention utilizes a high value, small sized capacitor having at least a capacitive rating of 0.1 farads which is completely contained within the implantable stimulator. This high value, small size capacitor or series of capacitors enables the implantable stimulator to deliver, on a controlled and continual basis, electric stimulation pulses to targeted tissues over at least an 8 hour period. Further, the capacitive power source is replenished via an external, RF coupled device on a daily or other long term periodic basis. During the replenishing cycle, the energy contained in the battery of the external transmitter is transferred to the internal capacitive power source in the implantable stimulator. The method includes providing, on an exclusive basis, power to an implantable stimulator via a high value capacitive source during at least an 8 hour cycle of substantially continual delivery of electric stimulation pulses to targeted tissue. The method includes incorporating and containing a capacitive device in the implantable stimulator wherein the capacitive device has a capacitive rating of at least 0.1 farads. The capacitive device captures and stores a pre-determined amount of coulombs of electrical energy. This electrical energy is utilized to power the implantable stimulator during at least an 8 hour cycle during substantial continual delivery of electric stimulation pulses, all based upon energy stored by the capacitive device. Longer cycles (exceeding 24 hours) may be possible. The replenishment unit can be programmed to interrogate the implant and reprogram the implant upon detection of a lower power status signal. Also, automatic as well as manually commanded replenishment routines are established between the replenishment unit and the implant. Data transmission, error detection routines are established for the programming of the implant.
摘要:
The implantable stimulator in accordance with the principles of the present invention utilizes a high value, small sized capacitor having at least a capacitive rating of 0.1 farads which is completely contained within the implantable stimulator. This high value, small size capacitor or series of capacitors enables the implantable stimulator to deliver, on a controlled and continual basis, electric stimulation pulses to targeted tissues over at least a 8 period. Further, the capacitive power source is recharged or replenished via an external, RF coupled device on a daily or other long term periodic basis. The method includes providing, on an exclusive basis, power to an implantable stimulator via a high value capacitive source during at least a twenty-four cycle of substantially continual delivery of electric stimulation pulses to targeted tissue. The method includes incorporating and containing a capacitive device in the implantable stimulator wherein the capacitive device has a capacitive rating of at least 0.1 farads. The capacitive device captures and stores a pre-determined amount of coulombs of electrical energy. This electrical energy is utilized to power the implantable stimulator during the 8 hour cycle during substantial continual delivery of electric stimulation pulses, all based upon energy stored by the capacitive device.
摘要:
A battery powered implantable cardiac pacer includes a battery consumption monitor circuit which develops within an internal counter a cumulative count of battery consumption in milliampere hours. The consumption count may be read out to an external indicator by a multiplex circuit to provide to the user an indication of battery life remaining. An over-current feature within the monitor circuit provides an alarm signal in the event that battery consumption exceeds a predetermined maximum level.
摘要:
A system for detecting P waves samples a cardiac signal during first and second time periods set by a clock signal. Comparators determine whether the signal increases in voltage during the time periods by a predetermined value, testing whether the slew rate of the signal falls within a range corresponding to the slew rate of a P wave. Latches responsive to the comparators provide input to a logic circuit whose output clocks a counter. Three successive positive samples input into the counter will cause the counter to generate a signal indicating a P wave has been detected.
摘要:
A temperature and voltage stable clock circuit for use in implantable cardiac pacers employs CMOS devices to minimize current drain. The circuit includes a timing capacitor which is alternately charged to and discharged between two established threshold voltages during respective charge and discharge cycles, the periods of which determine the clock frequency. To render the frequency of the clock circuit independent of changes in capacitor charge and discharge currents brought about by changes in temperature, the threshold voltage is increased with temperature so that the charge and discharge cycles remain constant. To render the frequency of the clock circuit independent of changes in the power supply voltage, a Wilson current source is used to maintain a constant charge and discharge current to the timing capacitor.