Abstract:
The invention is a method for liquid, gaseous or supercritical phase chromatography which involves circulating, on a chromatograph (6) containing a stationary phase, a load (1) comprising components to be separated entrained by a carrier fluid (2), said method being characterized in that it involves: (a) obtaining, at the outlet of the chromatograph, a plurality of chromatographic fractions (3, 4) comprising at least one component of the load and the carrier fluid in a first fluid phase, (b) imposing a change of state on at least one of said chromatographic fractions (3, 4) so as to obtain at least one fraction of purified carrier fluid in a second fluid phase different from the first fluid phase by separating said carrier fluid from the component of the load, (c) imposing a change of state in a reverse direction to that of step (b) on at least one fraction of purified carrier fluid obtained in step (b) so as to obtain at least one fraction of purified carrier fluid in a third fluid phase different to the second fluid phase, and in that it involves coupling the change-of-state energies from the first fluid phase to the second fluid phase and from the second fluid phase to the third fluid phase of the same or of another fraction of purified carrier fluid, said coupling comprising a transfer of heat using a heat pump.
Abstract:
The invention relates to a monolithic porous material made of amorphous silica or activated alumina, comprising substantially rectilinear capillary channels that are parallel to one another, wherein:the channels have a substantially uniform cross-section relative to each other,the cross-section of each channel is regular over its entire length,the channels pass through the material from end to end,the length of the channels is equal to or more than 10 mm.The invention also relates to an annular, radial or axial chromatographic apparatus, the packing of which consists of at least one said monolithic material.The invention also relates to processes for manufacturing such a monolithic material.
Abstract:
The invention is a method for liquid, gaseous or supercritical phase chromatography which involves circulating, on a chromatograph (6) containing a stationary phase, a load (1) comprising components to be separated entrained by a carrier fluid (2), said method being characterized in that it involves: (a) obtaining, at the outlet of the chromatograph, a plurality of chromatographic fractions (3, 4) comprising at least one component of the load and the carrier fluid in a first fluid phase, (b) imposing a change of state on at least one of said chromatographic fractions (3, 4) so as to obtain at least one fraction of purified carrier fluid in a second fluid phase different from the first fluid phase by separating said carrier fluid from the component of the load, (c) imposing a change of state in a reverse direction to that of step (b) on at least one fraction of purified carrier fluid obtained in step (b) so as to obtain at least one fraction of purified carrier fluid in a third fluid phase different to the second fluid phase, and in that it involves coupling the change-of-state energies from the first fluid phase to the second fluid phase and from the second fluid phase to the third fluid phase of the same or of another fraction of purified carrier fluid, said coupling comprising a transfer of heat using a heat pump.
Abstract:
The invention relates to a monolithic porous material based on amorphous silica or activated alumina or on one of their mixtures, the material comprising substantially rectilinear capillary ducts that lie parallel to one another, and being intended to be used as packing in a chromatography column, characterised in that: the ducts have, relative to one another, a substantially uniform cross section; the cross-section of each duct is uniform over its entire length; the ducts pass right through the material; the volume of micropores smaller than 0.3 nm is smaller than 50% of the total porous volume of the material.
Abstract:
The invention relates to a monolithic porous material based on amorphous silica or activated alumina or on one of their mixtures, the material comprising substantially rectilinear capillary ducts that lie parallel to one another, and being intended to be used as packing in a chromatography column, characterised in that: the ducts have, relative to one another, a substantially uniform cross section; the cross-section of each duct is uniform over its entire length; the ducts pass right through the material; the volume of micropores smaller than 0.3 nm is smaller than 50% of the total porous volume of the material.
Abstract:
The invention relates to a monolithic porous material made of amorphous silica or activated alumina, comprising substantially rectilinear capillary channels that are parallel to one another, wherein: the channels have a substantially uniform cross-section relative to each other, the cross-section of each channel is regular over its entire length, the channels pass through the material from end to end, the length of the channels is equal to or more than 10 mm. The invention also relates to an annular, radial or axial chromatographic apparatus, the packing of which consists of at least one said monolithic material.The invention also relates to processes for manufacturing such a monolithic material.
Abstract:
The invention relates to a monolithic porous material made of amorphous silica or activated alumina, comprising substantially rectilinear capillary channels that are parallel to one another, wherein: the channels have a substantially uniform cross-section relative to each other, the cross-section of each channel is regular over its entire length, the channels pass through the material from end to end, the length of the channels is equal to or more than 10 mm. The invention also relates to an annular, radial or axial chromatographic apparatus, the packing of which consists of at least one said monolithic material.The invention also relates to processes for manufacturing such a monolithic material.
Abstract:
A chromatography method in which a gaseous, liquid or supercritical mobile phase containing species to be separated is circulated through a packing. The packing includes a plurality of capillary ducts extending in the packing between an upstream face through which the mobile phase enters the packing and a downstream face through which the mobile phase leaves the packing. A continuous medium permeable to molecular diffusion extends between the ducts, including a porous organic gel or an organic liquid with at least one network of connected pores, the size of which is greater than two times the molecular diameter of at least one species to be separated. The at least one species has a diffusive path between the ducts.
Abstract:
The invention relates to a method of chromatography wherein a gaseous, liquid or supercritical fluid mobile phase, which contains substances to be separated, flows through a porous packing which comprises a plurality of capillary channels which extend in the direction of flow of said mobile phase, said packing being manufactured by a method wherein: a bundle of elementary fibres is assembled, said fibres comprising a core made of a solid, liquid or gaseous material, and a shell made of a drawable material, said bundle is drawn in order to reduce the diameter of said fibres, a porous matrix is formed around the core of the drawn fibres, the formation of said porous matrix comprising a transformation of the shell material, where said porous matrix comprises at least one population of connected pores interconnecting the channels, where the thickness of the porous matrix between two adjacent channels is less than the diameter of the channels, preferably less than half the diameter of the channels, where necessary the core material is removed so as to leave free channels in the porous matrix.
Abstract:
Porous, granular particulates of titanium, zirconium or cerium oxide, preferably essentially spherical in shape, and having a specific volume of at least 0.1 cm.sup.3 /g and an apparent packed density of at least 0.2, are prepared by (a) intimately admixing a suspension or sol of titanium, zirconium or cerium oxide, at least one hydrophobic agent, and at least one organic solvent which is immiscible or only slightly miscible with water, thus producing a liquid phase essentially devoid of oxide values and granular solids based on titanium, zirconium or cerium oxide, (b) separating the liquid phase from the granular solids, and, optionally, (c) washing, drying and calcining the granular solids.