摘要:
The present invention relates to immunogenic compositions and vaccines for the treatment and prevention of Neisserial disease. Immunogenic compositions of the invention contain combinations of antigens selected from at least two different classes of antigens including adhesins, autotransporter proteins, toxins, iron acquisitions proteins and membrane-associated protein (preferably integral outer membrane protein)s. Such combinations of antigens are able to target the immune response against different aspects of the neisserial life cycle, resulting in a more effective immune response.
摘要:
The present invention relates to immunogenic compositions and vaccines for the treatment and prevention of Neisserial disease. Immunogenic compositions of the invention contain combinations of antigens selected from at least two different classes of antigens including adhesins, autotransporter proteins, toxins, iron acquisitions proteins and membrane-associated protein (preferably integral outer membrane protein)s. Such combinations of antigens are able to target the immune response against different aspects of the neisserial life cycle, resulting in a more effective immune response.
摘要:
The present invention relates to immunogenic compositions and vaccines for the treatment and prevention of Neisserial disease. Immunogenic compositions of the invention contain combinations of antigens selected from at least two different classes of antigens including adhesins, autotransporter proteins, toxins, iron acquisitions proteins and membrane-associated protein (preferably integral outer membrane protein)s. Such combinations of antigens are able to target the immune response against different aspects of the neisserial life cycle, resulting in a more effective immune response.
摘要:
The present invention relates to immunogenic compositions and vaccines for the treatment and prevention of Neisserial disease. Immunogenic compositions of the invention contain combinations of antigens selected from at least two different classes of antigens including adhesins, autotransporter proteins, toxins, iron acquisitions proteins and membrane-associated protein (preferably integral outer membrane protein)s. Such combinations of antigens are able to target the immune response against different aspects of the neisserial life cycle, resulting in a more effective immune response.
摘要:
The present invention relates to the field of neisserial vaccine compositions, their manufacture, and the use of such compositions in medicine. More particularly it relates to processes of making novel engineered meningococcal strains which are less phase variable in terms of their LOS immunotype, and from which novel LOS subunit or meningococcal outer-membrane vesicle (or bleb) vaccines can be derived.
摘要:
The present invention relates to the field of neisserial vaccine compositions, their manufacture, and the use of such compositions in medicine. More particularly it relates to processes of making novel engineered meningococcal strains which are more suitable for the production of neisserial, in particular meningococcal, outer-membrane vesicle (or bleb) vaccines. Advantageous processes and vaccine products are also described based on the use of novel LOS subunit or meningococcal outer-membrane vesicle (or bleb) vaccines which have been rendered safer and/or more effective for use in human subjects. In particular combinations of gene downregulations are described such as PorA and OpA, PorA and OpC, OpA and OpC, and PorA and OpA and OpC. Alternatively, or in addition, lgtB− is shown to be an optimal mutation for effectively and safely using L3 and/or L2 LOS in Neisseria vaccine compositions. Bleb vaccines derived from lgtB− and capsular polysaccharide deficient meningococcal mutants are further described; as are advantageous methods of making bleb preparations where LOS is to be retained as an important antigen.
摘要:
The present invention relates to the field of neisserial vaccine compositions, their manufacture, and the use of such compositions in medicine. More particularly it relates to processes of making novel engineered meningococcal strains which are more suitable for the production of neisserial, in particular meningococcal, outer-membrane vesicle (or bleb) vaccines. Advantageous processes and vaccine products are also described based on the use of novel LOS subunit or meningococcal outer-membrane vesicle (or bleb) vaccines which have been rendered safer and/or more effective for use in human subjects. In particular combinations of gene downregulations are described such as PorA and OpA, PorA and OpC, OpA and OpC, and PorA and OpA and OpC. Alternatively, or in addition, lgtB− is shown to be an optimal mutation for effectively and safely using L3 and/or L2 LOS in Neisseria vaccine compositions. Bleb vaccines derived from lgtB− and capsular polysaccharide deficient meningococcal mutants are further described; as are advantageous methods of making bleb preparations where LOS is to be retained as an important antigen.
摘要:
The present invention relates to the field of neisserial vaccine compositions, their manufacture, and the use of such compositions in medicine. More particularly it relates to processes of making novel engineered meningococcal strains which are more suitable for the production of neisserial, in particular meningococcal, outer-membrane vesicle (or bleb) vaccines. Advantageous processes and vaccine products are also described based on the use of novel LOS subunit or meningococcal outer-membrane vesicle (or bleb) vaccines which have been rendered safer and/or more effective for use in human subjects. In particular combinations of gene downregulations are described such as PorA and OpA, PorA and OpC, OpA and Opc, and PorA and OpA and OpC. Alternatively, or in addition, lgtB− is shown to be an optimal mutation for effectively and safely using L3 and/or L2 LOS in Neisseria vaccine compositions. Bleb vaccines derived from lgtB− and capsular polysaccharide deficient meningococcal mutants are further described; as are advantageous methods of making bleb preparations where LOS is to be retained as an important antigen.
摘要:
The present invention relates to the field of neisserial vaccine compositions, their manufacture, and the use of such compositions in medicine. More particularly it relates to processes of making novel engineered meningococcal strains which are more suitable for the production of neisserial, in particular meningococcal, outer-membrane vesicle (or bleb) vaccines. Advantageous processes and vaccine products are also described based on the use of novel LOS subunit or meningococcal outer-membrane vesicle (or bleb) vaccines which have been rendered safer and/or more effective for use in human subjects. In particular combinations of gene downregulations are described such as PorA and OpA, PorA and OpC, OpA and Opc, and PorA and OpA and OpC. Alternatively, or in addition, lgtB− is shown to be an optimal mutation for effectively and safely using L3 and/or L2 LOS in Neisseria vaccine compositions. Bleb vaccines derived from lgtB− and capsular polysaccharide deficient meningococcal mutants are further described; as are advantageous methods of making bleb preparations where LOS is to be retained as an important antigen.