摘要:
Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.
摘要:
Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.
摘要:
An improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.
摘要:
A particulate mixture of Fe.sub.2 O.sub.3 and RE.sub.2 O.sub.3, where RE is a rare earth element, is reacted with an excess of HF acid to form an insoluble fluoride compound (salt) comprising REF.sub.3 and FeF.sub.3 present in solid solution in the REF.sub.3 crystal lattice. The REF.sub.3 /FeF.sub.3 compound is dried to render it usable as a reactant in the thermite reduction process as well as other processes which require an REF.sub.3 /FeF.sub.3 mixture. The dried REF.sub.3 /FeF.sub.3 compound comprises about 5 weight % to about 40 weight % of FeF.sub.3 and the balance REF.sub.3 to this end.
摘要:
A method for preparing R5X4 alloy materials where R is a rare earth element selected from one or more of La, Ce, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, Sc, and Y and X represents a non-rare earth alloying element such as silicon, germanium, tin, lead, gallium, indium and mixtures thereof. The method involves carbothermically reducing amounts of a rare earth element-containing oxide, an alloying element-containing oxide and/or alloying element in elemental or alloy form, and carbon at elevated temperature to form an R5X4 alloy material, which is melted, solidified, and optionally heat treated. Such a method provides an economical and efficient technique of configuring magnetic refrigerant, magnetostrictive and magnetoresistive alloys and products.
摘要翻译:一种制备R5X4合金材料的方法,其中R是选自La,Ce,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Lu,Sc和Y中的一种或多种的稀土元素,X和X表示 非稀土合金元素如硅,锗,锡,铅,镓,铟及其混合物。 该方法包括在元素或合金形式的碳纳米管中减少含稀土元素的氧化物,含合金元素的氧化物和/或合金元素的量,并在升高的温度下形成碳,以形成熔融固化的R 5 X 4合金材料, 并任选地进行热处理。 这种方法提供了一种经济有效的配置磁性制冷剂,磁致伸缩和磁阻合金和产品的技术。
摘要:
A carbothermic reduction method is provided for reducing a La-, Ce-, MM-, and/or Y-containing oxide in the presence of carbon and a source of a reactant element comprising Si, Ge, Sn, Pb, As, Sb, Bi, and/or P to form an intermediate alloy material including a majority of La, Ce, MM, and/or Y and a minor amount of the reactant element. The intermediate material is useful as a master alloy for in making negative electrode materials for a metal hydride battery, as hydrogen storage alloys, as master alloy additive for addition to a melt of commercial Mg and Al alloys, steels, cast irons, and superalloys; or in reducing Sm2O3 to Sm metal for use in Sm—Co permanent magnets.
摘要:
A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.
摘要:
A carbothermic reduction method is provided for reducing a rare earth element-containing oxide including at least one of neodymium (Nd) and praseodymium (Pr) and possibly other rare earth elements (La, Ce, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, and Y) as alloying agents in the presence of carbon and a source of a reactant element including one or more of silicon, germanium, tin, lead, arsenic, antimony and bismuth to form a rare earth element-containing intermediate alloy as a master alloy for making permanent magnet material. The process is a more efficient, lower cost and environmentally friendly technology than current methods of manufacturing rare earth metals. The intermediate material is useful as a master alloy for making a permanent magnet material comprising at least one of neodymium and praseodymium, and possibly other rare earth metals as alloying additives.
摘要:
Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.
摘要:
An audiographics conferencing arrangement for use in a business communication system allows the conferees to exchange displayed text and/or graphics stored locally in their respective data terminals. The conferees may change the displayed text and/or graphics and such changes are automatically distributed to the other data terminals so that all of the conferees view the same information. Moreover, a data terminal and its associated telephone station set may be included in an audiographics conference connection even though they are not directly served by the business communication system. In addition, one of the conferees may establish concurrent with the original audiographics conference connection a second audiographics conference connection with one or more other data terminals and transfer information obtained from one conference connection to the other conference connection.