摘要:
A method for producing liquefied natural gas (LNG). A natural gas stream is transported to a liquefaction vessel. The natural gas stream is liquefied on the liquefaction vessel using at least one heat exchanger that exchanges heat between the natural gas stream and a liquid nitrogen stream to at least partially vaporize the liquefied nitrogen stream, thereby forming a warmed nitrogen gas stream and an at least partially condensed natural gas stream comprising LNG. The liquefaction vessel includes at least one tank that only stores liquid nitrogen and at least one tank that only stores LNG.
摘要:
A method for producing liquefied natural gas (LNG). A natural gas stream is transported to a liquefaction vessel. The natural gas stream is liquefied on the liquefaction vessel using at least one heat exchanger that exchanges heat between the natural gas stream and a liquid nitrogen stream to at least partially vaporize the liquefied nitrogen stream, thereby forming a warmed nitrogen gas stream and an at least partially condensed natural gas stream comprising LNG. The liquefaction vessel includes at least one tank that only stores liquid nitrogen and at least one tank that only stores LNG.
摘要:
The invention is directed to a method of fueling gas turbines from natural gas reserves with relatively low methane concentrations. The invention uses such reserves to generate electric power. The invention permits the use of these reserves at significantly lower cost than by producing pipeline natural gas to fuel gas turbines to generate electric power. These reserves currently generally are used only after the removal of impurities to produce pipeline natural gas quality turbine fuel. The latter current technology is capital intensive, and at current natural gas prices, economically unattractive. The process of the invention can remove the impurities from the gas from the natural gas reserve necessary for protection of the environment, and leaves inert gasses in the fuel in an amount which will increase the output of a gas turbine for the generation of power by about 5 to about 20%.
摘要:
A method of fueling a gas turbine with methane gas originating from low-methane (40%-80%) natural gas comprising the following steps: 1) blending inert gas and a natural gas stream, 2) removing at least one acid from the blend, 3) hydrating the blend, 4) converting part of the methane to hydrogen, 5) dehydrating the blend obtained in step (4) for ultimately obtaining a dehydrated hydrogen enhanced inert gas/methane gas/hydrogen gas blend, and 5) fueling a gas turbine with the blend obtained in step (5).
摘要:
An elongated bubble cap tray allows three phases: solid, vapor and liquid, to come in contact at the bottom of a controlled freezing zone and transfer heat and mass amongst themselves. Complete melting of the solid phase may be achieved in this tray, significantly reducing or totally eliminating the need for an external source of energy as well as its associated heat transfer equipment.
摘要:
A drive system for liquefied natural gas (LNG) production. A standardized machinery string consisting of a multi-shaft gas turbine with no more than three compressor bodies, where the compressor bodies are applied to one or more refrigerant compressors employed in one or more refrigerant cycles (e.g., single mixed refrigerant, propane precooled mixed refrigerant, dual mixed refrigerant). The standardized machinery strings and associated standardized refrigerators are designed for a generic range of feed gas composition and ambient temperature conditions and are installed in opportunistic liquefaction plants without substantial reengineering and modifications. The approach captures D1BM (“Design 1 Build Many) cost and schedule efficiencies by allowing for broader variability in liquefaction efficiency with location and feed gas composition.
摘要:
The invention is directed to a method of fueling gas turbines from natural gas reserves with relatively low methane concentrations. The invention uses such reserves to generate electric power. The invention permits the use of these reserves at significantly lower cost than by producing pipeline natural gas to fuel gas turbines to generate electric power. These reserves currently generally are used only after the removal of impurities to produce pipeline natural gas quality turbine fuel. The latter current technology is capital intensive, and at current natural gas prices, economically unattractive. The process of the invention can remove the impurities from the gas from the natural gas reserve necessary for protection of the environment and leaves inert gasses in the fuel in an amount which will increase the output of a gas turbine for the generation of power by about 5 to about 20%.
摘要:
A method for conditioning the freezing zone liquid feedstream in the cryogenic separation of carbon dioxide and other acid gases from methane by use of distillation and a controlled freezing zone, including the step of sub-cooling the freezing zone liquid feedstream, so that this freezing zone liquid feedstream remains close to, but not quite at, carbon dioxide solidification conditions.
摘要:
Methods and systems for treating a compressed gas stream. The compressed gas stream is cooled and liquids are removed therefrom to form a dry gas stream, which is chilled in a first heat exchanger. Liquids are separated therefrom, thereby producing a cold vapor stream and a liquids stream. A first part of the cold vapor stream is expanded to produce a cold two-phase fluid stream, and a second part of the cold vapor stream is cooled to form a cooled reflux stream. Various streams are fed into a separation column to produce a cold fuel gas stream and a low temperature liquids stream. The second part of the cold vapor stream is cooled by the cold fuel gas stream, which becomes a warmed fuel gas stream that is compressed and used with the low-temperature liquids stream to chill the dry gas stream and to cool the compressed gas stream.
摘要:
The invention is a method and system of separating a multi-component fluid in a wellbore. At least one fluid separation membrane comprising a feed side and a permeate side is incorporated in the wellbore. A flowing stream of the multi-component fluid obtained from a subterranean zone being in fluid communication with the wellbore is passed across the feed side of the membrane at a first pressure. A retentate stream depleted in at least one component compared to the multi-component fluid is withdrawn from the feed side of the membrane and passed to the earth's surface. A permeate stream at a second pressure is withdrawn from the permeate side, in which the permeate stream is enriched in at least one component compared with the multi-component fluid. The second pressure is controlled to maintain the second pressure below the first pressure.