Abstract:
A keyboard is provided with a base member, moving members provided on the base member and unit parts. Each of the unit parts includes a contact which is electrically connected when depressed and an elastic member. The moving members include a first moving member which engages with one unit part, and a second moving member which engages with plural unit parts. The second moving member has a structure where the second moving member pushes the elastic member of one unit part and avoids pushing the elastic member of the other unit part.
Abstract:
A touchscreen panel includes an upper substrate having a first transparent conductor layer provided on a first base layer, and a lower substrate having a second transparent conductor layer provided on a second base layer. The first and second transparent conductor layers oppose each other via a spacer and make contact when the first base layer is pressed. The first transparent conductor layer is segmented into a plurality of conductive regions that are electrically insulated from each other.
Abstract:
A touchscreen panel includes an upper substrate having a first transparent conductor layer provided on a first base layer, and a lower substrate having a second transparent conductor layer provided on a second base layer. The first and second transparent conductor layers oppose each other via a spacer and make contact when the first base layer is pressed. The first transparent conductor layer is segmented into a plurality of conductive regions that are electrically insulated from each other.
Abstract:
A position detecting method for a touchscreen panel includes the steps of (a) determining the presence or absence of contact with the touchscreen panel on a conductive film divided into multiple conductive regions; (b) measuring a time after the detection of the absence of the contact and determining whether the measured time is less than a predetermined time if step (a) determines the absence of the contact; and (c) determining the continuance of the contact if the measured time is less than the predetermined time.
Abstract:
In a coordinate detection apparatus, a resistance-film is formed on a substrate made of an insulating material. A common electrode applies a voltage to the resistance-film, the common electrode extending along a plurality of a resistance-film removal areas formed by removing portions of the resistance-film. A voltage application part applies the voltage to the common electrode. The voltage is applied from the voltage application part to the resistance-film through the common electrode to generate a potential distribution in the resistance-film. A coordinate position of a contact position at which the resistance-film is contacted is detected by detecting a potential of the resistance-film at the contact position.
Abstract:
A printer includes: a sensor; a calculation unit that calculates an average value of mark levels and a permissible range in accordance with the average value, the mark levels being output levels of the sensor that has read a mark on a sheet a given number of times; a setting unit that, when the mark levels read the given number of times fall within the permissible range, sets a middle value between a white level and the average value as a determination value of existence or nonexistence of a next mark, the white level being an output level of the sensor when a non-marking domain of the sheet is read; and a determination unit that determines that the next mark has been detected when a mark level at the time of reading of the next mark is less than the determination value of existence or nonexistence of the next mark.
Abstract:
A position detecting method for a touchscreen panel includes the steps of (a) determining the presence or absence of contact with the touchscreen panel on a conductive film divided into multiple conductive regions; (b) measuring a time after the detection of the absence of the contact and determining whether the measured time is less than a predetermined time if step (a) determines the absence of the contact; and (c) determining the continuance of the contact if the measured time is less than the predetermined time.
Abstract:
A pointing device includes: a film that includes a protruding portion which protrudes upward, and a plane portion which extends from the protruding portion; a first conducting layer that is disposed under the film; a second conducting layer that is disposed on a base material and is opposed to the first conducting layer; and a plurality of spacers that are formed on any one of a lower portion of the first conducting layer and an upper portion of the second conducting layer, and are arranged, between the first conducting layer and the second conducting layer, so as to be spaced mutually; wherein an interval between the spacers in an area of the plane portion is formed so as to become narrower than an interval between the spacers in an area of the protruding portion.
Abstract:
A touch input device includes: a touch surface that has a three-dimensional structure, and identifies a touch coordinate of a point touched by an object; and a controller that defines a first direction in the touch surface as a first direction in an output coordinate, and outputs information about the output coordinate, wherein the three-dimensional structure has a size and a height at least one of which is changed so that the first direction in the touch surface and a second direction in the touch surface intersecting with the first direction in the touch surface can be recognized.
Abstract:
A printer includes: a sensor; a calculation unit that calculates an average value of mark levels and a permissible range in accordance with the average value, the mark levels being output levels of the sensor that has read a mark on a sheet a given number of times; a setting unit that, when the mark levels read the given number of times fall within the permissible range, sets a middle value between a white level and the average value as a determination value of existence or nonexistence of a next mark, the white level being an output level of the sensor when a non-marking domain of the sheet is read; and a determination unit that determines that the next mark has been detected when a mark level at the time of reading of the next mark is less than the determination value of existence or nonexistence of the next mark.