摘要:
An automatic focusing method for scanning electron microscopy. A scanning electron microscope is set in a low magnification mode to detect a taper portion of an object to be observed. The beam scanning whose direction is perpendicular to the taper portion is effected whenever objective lens control condition is changed at a first pitch, and the secondary electron signals obtained under these conditions are converted into video signals. The video signals are differential smoothed to calculate a sum of video signal absolute values. On the basis of the sum of the absolute values, an optimum objective lens control condition in the low magnification mode can be obtained. Sequentially, the microscope is set to a high magnification mode, and the objective lens control condition is further changed at a second pitch within a predetermined range with the optimum control condition in the low magnification mode as the center of the range. The beam scanning whose direction is perpendicular to the taper portion is effected. In the same way as in the low magnification mode, the secondary electrons signal obtained under these conditions are converted into video signals to obtain the optimum objective lens control condition in the high magnification mode. The optimum control condition obtained in the high magnification mode is determined as the control condition to determine the focal distance of the objective lens.
摘要:
A pattern dimension measuring method for measuring the dimension of a measuring portion of a pattern of a specimen placed on a specimen stage by controlling a deflector of a scan type electron microscope capable of setting a desired inclination angle of the specimen stage a lens barrel, applying an electron beam to the measuring portion of the specimen, and image processing a secondary electron signal from the measuring portion, the method comprising: a first step of calculating the distance between top edges of the measuring portion of the pattern by image processing the secondary electron signal when the electron beam is applied to the measuring portion at an inclination angle of zero; a second step of obtaining the number of pixels at a taper portion of the measuring portion of the pattern by image processing the secondary electron signal when the electron beam is applied to the measuring portion at a first predetermined inclination angle which allows to observe the bottom edges; a third step of obtaining the number of pixels at the taper portion by image processing the secondary electron signal when the electron beam is applied to the measuring portion at a second predetermined inclination angle different from the first inclination angle which allows to observe the bottom edges; a fourth step of calculating the taper angle and height of the pattern in accordance with the numbers of pixels of the taper portion obtained at the second and third steps and the first and second predetermined inclination angles; and a fifth step of calculating the distance between the bottom edges of the pattern and the difference ratio between the top edge and bottom edge distances in accordance with the results calculated at the fourth step.
摘要:
A pattern profile measuring method and apparatus for measuring the profile of a measuring portion of a pattern of a specimen placed on a specimen stage by controlling a deflector of a scanning electron microscope capable of setting a desired inclination angle of one of the specimen stage and an electron optical column, applying an electron beam to the measuring portion of the specimen, and image processing a secondary electron signal from the measuring portion. The method comprises: a first step of calculating the distance at the bottom portion of the measuring portion of the pattern by image processing the secondary electron signal when the electron beam is applied to the measuring portion at an inclination angle of zero; a second step of obtaining the number of pixels at a taper portion of the measuring portion of the pattern by image processing the secondary electron signal when the electron beam is applied to the measuring portion at a first predetermined inclination angle; a third step of obtaining the number of pixels at the taper portion by image processing the secondary electron signal when the electron beam is applied to the measuring portion at a second predetermined inclination angle different from the first inclination angle; a fourth step of calculating the taper angle and depth of the pattern in accordance with the numbers of pixels of the taper portion obtained at the second and third steps and the first and second predetermined inclination angles; and a fifth step of obtaining the profile of the taper portion in accordance with the strength change of the secondary electron signal from the taper portion.
摘要:
An image forming method includes a first step of irradiating a beam onto an object, and using an intensity corresponding to an image area onto which the beam was irradiated as an intensity of a pixel at the center of the image area, and scanning a beam throughout the inspection area of the object to obtain an image within the inspection area as a collection of pixels arranged at intervals smaller than a beam diameter; and a second step of assigning a pixel to be processed and neighboring pixels with coefficients in accordance with a beam intensity distribution, multiplying the intensity of each pixel by each assigned coefficient, determining a new intensity of the pixel to be processed in accordance with the sum of respective products, and repeating the new intensity determining process for all pixels necessary to be processed. In the second step, the value of the coefficients for those pixels except on the scanning direction may be reduced. Further, a third step may be provided for linearly-transforming the intensities so as to make the intensities of respective pixels to be distributed within a predetermined range.
摘要:
Before detecting the surface state of specific patterns a sample by means of an electron beam tester system, patterns formed in a specified surface area of the sample, are detected by deflecting an electron beam by a deflection coil. Data representing current supplied to the deflection coil, data representing the position of the sample during the pattern-detecting operation, and image signals representing the patterns found in the specified surface area, are stored in a memory. While the specific patterns of a sample are being detected, the electron beam is used to perform a second pattern-detecting operation. Data representing current supplied to the deflection coil during the second pattern-detecting operation, such data representing the position of the sample, and image signals provided by the second pattern-detecting operation representing the patterns formed in the specified surface area, afe compared with those data items already stored in the memory. From the difference between the compared two sets of data items, any drift in the electron beam is calculated. In accordance with the drift thus calculated, the deflection coil is energized to deflec the electron beam such that the beam is applied onto the desired portion of the sample.
摘要:
In an operation of a pattern dimension measuring system comprising a stage, an electron gun part, electron lens systems for scanning electron beam on a sample and having a MOL mechanism thereto, a secondary electron detector for detecting secondary electrons and so forth emitted from the sample, and a host computer having a pattern dimension measuring part, the stage is moved at a constant velocity, the coordinates of the stage is measured by a laser interferometer in real time, the variation in working distance of the electron beam is measured in real time by the optical lever system from a focal length measuring part to be fed back to a stage control part and an objective lens. When a pattern serving as an object to be measured reaches a region capable of scanning, the electron beam is scanned in the best focus while moving the scanning start position of the electron beam in synchronism with the constant velocity movement of the stage, so that the SEM image thereof is acquired.
摘要:
To prevent electric charge up from being accumulated on the plane scanned by an electron beam and further to improve the S/N ratio, an electron beam irradiating apparatus comprising: position information signal outputting section for outputting position information signals, in sequence to designate positions at which an electron beam is irradiated on a plane scanned by the electron beam, so as to designate the irradiation positions at random; and irradiation controller for controlling the electron beam to irradiate the electron beam at the irradiation positions in response to the outputted position information signals. Further, to integrate an photoelectric signal over a sufficient time interval within the period of the pixel clock signal, the electric signal detecting circuit comprises a plurality of sample hold circuits and a selecting circuit for selecting and activating the sample hold circuits in sequence.
摘要:
An automatic focus control system comprises an electron beam lens column 1, a device control apparatus 2, and a host computer 3. In the host computer 3, an image processing section 32 and so on are provided. In case of measuring the critical dimension of the patterns in the wafer, after performing the global alignment adjustment, the power spectrum is calculated based on the SEM image of each measuring point in the wafer. After that, in case that the high-frequency component is included more than a prescribed standard value, without performing the automatic focus adjustment, the process for the pattern recognition is performed, and in case that the high-frequency component is included less than the standard value, the process for pattern recognition is performed just before the automatic focus adjustment. Therefore, it is possible to decrease the frequency (times) which performs the process for automatic focus adjustment; as a result, the throughput for measuring is improved.
摘要:
Analog image data a SEM are converted into digital data, and are processed by a spatial filtering processing, histogram processing, threshold value setting, three-valued image data processing, noise reduction and the like. Area of a pattern in the three-valued image data is calculated by a labelling and calculation processing, and a pattern is sequentially detected by comparing the area of the pattern with a reference area value. The comparison and detection of the same or similar patterns repeated in the SEM image are performed by using the area of the pattern, and are not performed by a shape of the pattern, thereby resulting a precise detection at high speed by using a microprocessor. Since it is possible to perform a pattern recognition from the area value even though the pattern does not have a characteristic, it is possible to precisely detect and recognize a pattern image in high speed.
摘要:
A critical dimension measuring equipment includes a filtering circuit for inputting image data from a SEM and performs spatial filtering processing of the image data, a histogram processing circuit implements histogram processing of the image data, a threshold value detection circuit obtains a threshold value based on a discriminant criteria method, a three-value conversion processing circuits implements three-value conversion of the image data based on the threshold value, a first calculation circuit obtains the area and perimeter of the bottom section of the pattern based on this data, a second calculation circuit obtains the diameters of the patterns based on this data, and a critical shape recognition circuit decide whether the pattern is circular or elliptical based on the critical diameter, calculates the diameter of the circle based on the area if the pattern is circular, and calculating the major axis and the minor axis of the ellipse based on the area and the perimeter if the pattern is elliptical.