Abstract:
A method of manufacturing a processed body having a hydrophobic and water-repellent surface, and a processed body having a hydrophobic and water-repellent surface. The method includes: a step of contacting a member made of a crystalline or semicrystalline polymer with a solvent in a solvent-contacting region; and a step of taking the member contacted with the solvent out of the solvent-contacting region and drying the member.
Abstract:
A multi-core amplification optical fiber includes a plurality of rare-earth-doped core portions and a cladding portion positioned at an outer periphery of the core portions and having refractive index lower than those of the core portions. When a doping concentration of the rare-earth of each of the core portions is 250 ppm to 2000 ppm, a relative refractive index difference of each of the core portions relative to the cladding portion is 0.5% to 2% at a wavelength of 1550 nm, and a core diameter of each of the core portions is 1 μm to 5 μm, a separation distance between each of the core portions and adjacent one of the core portions is set at equal to or larger than 30 μm and at equal to or smaller than 60 μm so that a light-crosstalk between the adjacent core portions is equal to or lower than −30 dB.
Abstract:
An optical coupling structure optically coupling a plurality of core portions and a plurality of core portions includes a plurality of first core portions outputting a plurality of lights, a first lens focusing or collimating the plurality of lights outputted from the plurality of first core portions, a second lens focusing the plurality of lights focused or collimated by the first lens, a plurality of second core portions, the plurality of lights focused by the second lens being inputted into the second core portions respectively, and an optical functional component disposed between the first lens and the second lens, the plurality of lights being inputted into the optical functional component. At least one of the first lens and the second lens is configured by a lens or a lens group focusing or collimating the plurality of lights collectively.
Abstract:
An optical amplifier includes an optical gain fiber into which signal light and pump light are input and at least one relative phase shifter is inserted. Preferably, the relative phase shifter is inserted so that the relative phase in the lengthwise direction of the optical gain fiber falls within a predetermined range containing 0.5 Π. Preferably, the optical gain fiber is a highly non-linear optical fiber having a non-linearity constant of at least 10/W/km. Preferably, the dispersion of the optical gain fiber is within the range from −1 ps/nm/km to 1 ps/nm/km in an amplification band. Preferably, the absolute value of the dispersion slope of the optical gain fiber at a zero dispersion wavelength is no greater than 0.05 ps/nm2/km.
Abstract:
A multi-core amplification optical fiber includes: a plurality of core portions doped with a rare-earth element; an inner cladding portion positioned at a periphery of the plurality of core portions, having a refractive index lower than a refractive index of the plurality of core portions, in which a first hole is formed; and an outer cladding layer positioned at a periphery of the inner cladding portion, having a refractive index lower than the refractive index of the inner cladding portion.
Abstract:
An optical amplifier includes an optical gain fiber into which signal light and pump light are input and at least one relative phase shifter is inserted. Preferably, the relative phase shifter is inserted so that the relative phase in the lengthwise direction of the optical gain fiber falls within a predetermined range containing 0.5π. Preferably, the optical gain fiber is a highly non-linear optical fiber having a non-linearity constant of at least 10/W/km. Preferably, the dispersion of the optical gain fiber is within the range from −1 ps/nm/km to 1 ps/nm/km in an amplification band. Preferably, the absolute value of the dispersion slope of the optical gain fiber at a zero dispersion wavelength is no greater than 0.05 ps/nm2/km.
Abstract:
A multi-core amplification optical fiber includes a plurality of rare-earth-doped core portions and a cladding portion positioned at an outer periphery of the core portions and having refractive index lower than those of the core portions. When a doping concentration of the rare-earth of each of the core portions is 250 ppm to 2000 ppm, a relative refractive index difference of each of the core portions relative to the cladding portion is 0.5% to 2% at a wavelength of 1550 nm, and a core diameter of each of the core portions is 1 μm to 5 μm, a separation distance between each of the core portions and adjacent one of the core portions is set at equal to or larger than 30 μm and at equal to or smaller than 60 μm so that a light-crosstalk between the adjacent core portions is equal to or lower than −30 dB.