Abstract:
System and method embodiments are provided for a broadband switchable antenna. The embodiments enable an easily tunable, temporally switchable antenna with good low- and high-band performance with controlled high impedance loci that easily coexists with other wireless device components. In an embodiment, a broadband switchable antenna includes an antenna feed; a high-band antenna arm comprising a first end electrically coupled to an antenna feed and a second end electrically coupled to ground; a switch coupled to the antenna feed at a position proximate to the first end of the high-band antenna arm; and a low-band antenna arm comprising a first end electrically coupled to the switch, wherein the antenna is configured to operate in a high-band mode when the switch is open and to operate in a low-band mode when the switch is closed.
Abstract:
Embodiments are provided for an efficient antenna design and operation method to adjust or add frequency bands at mobile devices using the available limited antenna size. The embodiments include electrically coupling to the antenna elements at a mobile or radio device a tuning stub or element through a printed circuit board (PCB) or a metal chassis. The PCB is placed between the antenna elements and the tuning stub and is connected to the antenna elements. The tuning stub, e.g., at a corner of the PCB, is connected or disconnected via a switch from the PCB, and hence the antenna elements, to shift the radiation of the antenna at different frequencies and also provide an additional mode of radiation. The tuning stub can also be switched to vary the radiation pattern of the antenna.
Abstract:
Embodiments are provided for an efficient antenna design and operation method to adjust or add frequency bands at mobile devices using the available limited antenna size. The embodiments include electrically coupling to the antenna elements at a mobile or radio device a tuning stub or element through a printed circuit board (PCB) or a metal chassis. The PCB is placed between the antenna elements and the tuning stub and is connected to the antenna elements. The tuning stub, e.g., at a corner of the PCB, is connected or disconnected via a switch from the PCB, and hence the antenna elements, to shift the radiation of the antenna at different frequencies and also provide an additional mode of radiation. The tuning stub can also be switched to vary the radiation pattern of the antenna.
Abstract:
Embodiments are provided for an efficient antenna design and operation method to adjust or add frequency bands at mobile devices using the available limited antenna size. The embodiments include electrically coupling to the antenna elements at a mobile or radio device a tuning stub or element through a printed circuit board (PCB) or a metal chassis. The PCB is placed between the antenna elements and the tuning stub and is connected to the antenna elements. The tuning stub, e.g., at a corner of the PCB, is connected or disconnected via a switch from the PCB, and hence the antenna elements, to shift the radiation of the antenna at different frequencies and also provide an additional mode of radiation. The tuning stub can also be switched to vary the radiation pattern of the antenna.
Abstract:
An apparatus is provided including a first antenna with a top face; a bottom face; and a periphery defined by an upper portion, a lower portion, and a pair of side portions. The first slot comprises a body, a first arm, and a second arm that divides the first antenna into a first portion, a second portion, a third portion, and a fourth portion. The first portion is larger than the third portion, and the third portion is larger than the second portion and the fourth portion. Further, the body of the first slot extends between the side portions of the periphery. Still yet, the first arm and the second arm extend between the body and one of the upper portion and the lower portion of the periphery. A dielectric is positioned in the first slot for providing continuous insulation between the first portion, the second portion, the third portion, and the fourth portion.
Abstract:
An embodiment eyeglass display includes a processor disposed in a system enclosure and a display system connected to the processor and configured to display data to a user via a display screen in an eye region. A first antenna is disposed in the system enclosure and operably connected to the processor. The processor is configured to cause the first antenna to transmit on a first radio frequency (RF) band. A second antenna is disposed outside the system enclosure and operably connected to the processor, and the processor is configured to cause the second antenna to transmit on a second RF band. The second antenna extends laterally along a first edge of the at least one eye region.
Abstract:
Embodiments are provided for an efficient antenna design and operation method to adjust or add frequency bands at mobile devices using the available limited antenna size. The embodiments include electrically coupling to the antenna elements at a mobile or radio device a tuning stub or element through a printed circuit board (PCB) or a metal chassis. The PCB is placed between the antenna elements and the tuning stub and is connected to the antenna elements. The tuning stub, e.g., at a corner of the PCB, is connected or disconnected via a switch from the PCB, and hence the antenna elements, to shift the radiation of the antenna at different frequencies and also provide an additional mode of radiation. The tuning stub can also be switched to vary the radiation pattern of the antenna.
Abstract:
An embodiment wireless communication device includes a circuit board and a cover having a back surface covering a portion of a first surface of the circuit board and an opening in the back surface. A top antenna is disposed within the cover and is electrically connected to the circuit board at a first feed point on a first edge of the circuit board. A secondary antenna disposed within the cover has a first antenna portion connected to the circuit board at a second feed point, and a second antenna portion of the second antenna extends laterally from a second edge of the circuit board over the first surface of the circuit board and between the back surface of the cover and the first surface of the circuit board such that at least a portion of the second antenna portion is exposed through the opening in the back surface.
Abstract:
A mobile node (MN) comprising an antenna comprising a proximate end, a distal end, and a midpoint, a first feed coupled to the antenna between the proximate end and the midpoint, a second feed coupled to the antenna between the distal end and the midpoint, a first switch configured to toggle between coupling the first feed to a main feed and coupling the second feed to the main feed, and a controller configured to control the toggling of the first switch.
Abstract:
System and method embodiments are provided for a broadband switchable antenna. The embodiments enable an easily tunable, temporally switchable antenna with good low- and high-band performance with controlled high impedance loci that easily coexists with other wireless device components. In an embodiment, a broadband switchable antenna includes an antenna feed; a high-band antenna arm comprising a first end electrically coupled to an antenna feed and a second end electrically coupled to ground; a switch coupled to the antenna feed at a position proximate to the first end of the high-band antenna arm; and a low-band antenna arm comprising a first end electrically coupled to the switch, wherein the antenna is configured to operate in a high-band mode when the switch is open and to operate in a low-band mode when the switch is closed.