Abstract:
Sealed and thermally insulating tank incorporated into a polyhedral bearing structure, the tank having a plurality of tank walls, a thermally insulating barrier and a sealed membrane, a first bearing wall and second bearing wall forming an edge corner, the thermally insulating barrier of a first tank wall having a row of edging blocks, a row of anchor strips anchored to the second bearing wall by a row of anchor rods, a first and second of edging blocks each having a groove formed in thickness of said edging block, a first and a second of said anchor rods being housed respectively in the groove of the first and second edging blocks, one anchor strip in the row of anchor strips is supported overlapping the first edging block and the second edging block, the anchor strip being coupled to the first anchor rod and to the second anchor rod.
Abstract:
An impermeable and thermally insulated tank built into a load-bearing structure, the tank wall comprising: a thermally insulated barrier attached to a load-bearing wall and made of insulated blocks, juxtaposed in parallel rows separated from one another by gaps, an impermeable barrier supported by the thermally insulated barrier and made of welded metal sheets. Each insulated block carries, on the face of same opposite the load-bearing wall, two metal connecting strips arranged in parallel to the sides of the insulated block. The sheets of the membrane carried by the insulated block are welded to the strips. The connecting strips are rigidly connected to the insulated block carrying same. The sheets each have at least two orthogonal folds parallel to the sides of the insulated blocks, the folds being inserted into the gaps formed between two insulated blocks.
Abstract:
Corrugated fluid-tight membrane fluid-tight wall (1) including two series of parallel corrugations forming a plurality of nodes (5) at the crossings of said series of corrugations,
wave reinforcements (11) being arranged under the corrugations (3) of the first series of corrugations (3), two successive wave reinforcements (11) in a corrugation (3) each including a hollow sole (15) and a reinforcement portion (16) disposed above the sole (15), the two wave reinforcements (11) being developed in the corrugation (3) on either side of a node (5), a connecting member (13) at the level of the node (5) being nested in the soles (15) of said two wave reinforcements (11) in such a manner as to assemble the two wave reinforcements (11) in an aligned position.
Abstract:
An impermeable and thermally insulated tank built into a load-bearing structure, the tank wall comprising: a thermally insulated barrier attached to a load-bearing wall and made of insulated blocks, juxtaposed in parallel rows separated from one another by gaps, an impermeable barrier supported by the thermally insulated barrier and made of welded metal sheets. Each insulated block carries, on the face of same opposite the load-bearing wall, two metal connecting strips arranged in parallel to the sides of the insulated block. The sheets of the membrane carried by the insulated block are welded to the strips. The connecting strips are rigidly connected to the insulated block carrying same. The sheets each have at least two orthogonal folds parallel to the sides of the insulated blocks, the folds being inserted into the gaps formed between two insulated blocks.
Abstract:
A sealed and thermally insulated tank arranged in a bearing structure (1) to contain a fluid, said tank comprising walls fixed to said bearing structure, a tank wall having a primary sealed barrier, a primary insulating barrier, a secondary sealed barrier and a secondary insulating barrier, the tank comprising a through-element arranged through the tank wall, in which tank the tank wall around the through-element comprises: secondary insulating blocks arranged on the wall of the bearing structure around the through-element and being covered by a first sealed layer forming the secondary sealed barrier, a circular plate arranged parallel to the tank wall at the same level as the first sealed layer forming the secondary sealed barrier, a second sealed layer (723a-d) fixed in a sealed manner straddling the first sealed layer and the circular plate all around the circular plate.
Abstract:
Sealed and thermally insulating tank incorporated into a polyhedral bearing structure, a first bearing wall and a second bearing wall forming an edge corner, the tank having a first tank wall, a thermally insulating barrier and a sealed membrane, the tank further has an angle bracket with a first flange and a second flange in such a way that the angle bracket connects in a sealed manner. The sealed membrane of the first tank wall and the sealed membrane of the second tank wall in line with the edge corner, in which the angle bracket has a pair of first tabs and a pair of second tabs, the tank has a pair of first anchor rods coupled to a respective first tab and a pair of second anchor rods coupled to a respective second tab in such a way as to transmit a tensile load between the angle bracket.
Abstract:
The disclosure relates to a sealed and thermally insulating tank for storing a fluid, said sealed tank comprising an outer support structure, a thermal insulating barrier retained on the support structure, and a sealing barrier supported by the thermal insulating barrier. In one embodiment, the thermal insulating barrier comprises a corner structure positioned at an intersection between a first and a second wall of the support structure, the corner structure comprising a first and a second insulating panel, each having an outer surface positioned facing the support structure, an inner surface provided with a member for securing the sealing membrane, and lateral edges, the first panel having an outer surface resting against the first wall of the support structure and a lateral edge resting against the second wall of the support structure, the second panel having an outer surface resting against the second wall of the support structure and a lateral edge resting against the outer surface of the first panel.
Abstract:
The disclosure relates to a corner structure which is suitable for a sealed and thermally insulating tank for storing a fluid comprising a secondary thermal insulation barrier which is retained on a carrier structure, a secondary sealing membrane, a primary thermal insulation barrier and a primary sealing membrane which is intended to be in contact with the fluid contained in the tank, the corner structure comprising: a first panel and a second panel forming a corner of the secondary thermal insulation barrier, and comprising an external face intended to move opposite the carrier structure and an internal face; a corner arrangement of the secondary sealing membrane, which arrangement is fixed to the first and second panels; a first insulating block and a second insulating block of a primary thermal insulation barrier which are fixed to the first and second panels, respectively, and which rest against the corner arrangement of the secondary sealing membrane; and a corner of a primary sealing barrier comprising a first wing and a second wing which are fixed to the first and second insulating blocks, respectively:
Abstract:
Sealed and thermally insulating tank incorporated into a polyhedral bearing structure, a first bearing wall and a second bearing wall forming an edge corner, the tank having a first tank wall, a thermally insulating barrier and a sealed membrane, the tank further has an angle bracket with a first flange and a second flange in such a way that the angle bracket connects in a sealed manner. The sealed membrane of the first tank wall and the sealed membrane of the second tank wall in line with the edge corner, in which the angle bracket has a pair of first tabs and a pair of second tabs, the tank has a pair of first anchor rods coupled to a respective first tab and a pair of second anchor rods coupled to a respective second tab in such a way as to transmit a tensile load between the angle bracket.
Abstract:
An impermeable and thermally insulated tank built into a load-bearing structure, the tank wall comprising: a thermally insulated barrier attached to a load-bearing wall and made of insulating blocks, juxtaposed in parallel rows separated from one another by gaps, an impermeable barrier supported by the thermally insulated barrier and made of welded metal sheets. Each insulating block carries, on the face of same opposite the load-bearing wall, two metal connecting strips arranged in parallel to the sides of the insulating block. The sheets of the membrane carried by the insulating block are welded to the strips. The connecting strips are rigidly connected to the insulating block carrying same. The sheets each have at least two orthogonal folds parallel to the sides of the insulating blocks, the folds being inserted into the gaps formed between two insulating blocks.