Abstract:
The alkylamine composition of the present disclosure contains: an alkylamine represented by the following formula (1) in an amount of 99.5% by volume or more; and water in an amount of 10 ppm by mass or more and 100 ppm by mass or less:
wherein N is a nitrogen atom; R1 is a C1-C10 hydrocarbon group optionally having a ring, a heteroatom, or a halogen atom; R2 and R3 are each independently a hydrogen atom or a C1-C10 hydrocarbon group optionally having a ring, a heteroatom, or a halogen atom; provided that the hydrocarbon group, when it has a carbon number of 3 or more, may have a branched chain structure or a ring structure and that the heteroatom in the hydrocarbon group is a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom; further, R1 and R2, when both of them are hydrocarbon groups having a carbon number of 1 or more, may be directly bonded to each other to form a ring structure; further, R1 or R2, which is directly bonded by a double bond to form a ring structure, may form an aromatic ring in the absence of R3; R1, R2, and R3 may be hydrocarbon groups which are the same as or different from one another; and R1 has at least one hydrogen atom at α carbon bonded to the nitrogen atom.
Abstract:
An impermeable and thermally insulated tank built into a load-bearing structure, the tank wall comprising: a thermally insulated barrier attached to a load-bearing wall and made of insulated blocks, juxtaposed in parallel rows separated from one another by gaps, an impermeable barrier supported by the thermally insulated barrier and made of welded metal sheets. Each insulated block carries, on the face of same opposite the load-bearing wall, two metal connecting strips arranged in parallel to the sides of the insulated block. The sheets of the membrane carried by the insulated block are welded to the strips. The connecting strips are rigidly connected to the insulated block carrying same. The sheets each have at least two orthogonal folds parallel to the sides of the insulated blocks, the folds being inserted into the gaps formed between two insulated blocks.
Abstract:
Provided a LNG ship that is manufactured in a short construction period by assembling a LNG tank on land and mounting the LNG tank in a hold of the ship.A cold insulator and a membrane are affixed on an inner side of a prismatic tank to fabricate a LNG tank, which is mounted in a hold having a double hull structure. In order to prevent the prismatic tank from deforming at the time of the mounting, strength members are welded to an outer surface of the prismatic tank before a thermal insulation work for the purpose of sufficient reinforcement. After the tank is mounted in the hold, the strength members of the prismatic tank are coupled to the inner hull of the ship to integrate the LNG tank and the hull, so that the weight of a liquid cargo is supported by the prismatic tank and the hull together.
Abstract:
The present invention relates to a high-pressure tank made from fiber-reinforced plastic for, in particular, gaseous media, wherein, on its inner wall, the tank is equipped completely or partially with a substantially permeation-tight foil made of metal, wherein the metal has a high elastic range and a low thermal expansion coefficient, and the foil has a thickness of ≦0.5 mm. The invention also relates to a method for manufacturing tanks of this type.
Abstract:
An LN storage tank is disclosed. The LNG storage tank includes: a lower insulation board for insulating LNG from the outside; a heating member placed on the lower insulation board; a main secondary barrier attached on the heating member; an upper insulation board attached on part of the main secondary barrier; and an auxiliary secondary barrier attached on the other part of the main secondary barrier, wherein a first adhesive layer may be interposed between the main secondary barrier and the auxiliary secondary barrier.
Abstract:
The invention regards a tank for storing of fluid at low temperature of insulated self carrying plate structure, where the plates comprises a sandwich structure, comprising two surface sheets of a metal or a material with similar properties and a core material with properties allowing for the variation of thermal deformation between the inner and outer surface sheets, which core material also provides for at least partly the insulation of the tank and which provides at least partly the necessary stiffness and strength of the wall. The invention also regard support means for the tank, a sandwich structure for use in a tank, and a method for producing the tank.
Abstract:
A sealed, thermally insulated tank consists of tank walls fixed to the load-bearing structure of a ship, the tank walls having, in succession, in the direction of the thickness from the inside to the outside of the tank, a primary sealing barrier, a primary insulating barrier, a secondary sealing barrier and a secondary insulating barrier, at least one of the insulating barriers consisting essentially of juxtaposed non-conducting elements (3), each non-conducting element including a thermal insulation liner, at least one panel and load-bearing partitions rising through the thickness of the thermal insulation liner in order to take up the compression forces. These partitions include at least one anti-buckle partition (14) that includes a plurality of anti-buckle wall elements that have a respective orientation forming an angle relative to a general longitudinal direction of the anti-buckle partition, for example forming corrugations or double-wall portions.
Abstract:
The present invention is a method for joining thermoplastic composite sandwich panels with thermoplastic welds (fusion bonds) made without autoclave processing of the joint. The preferred joint is a double interleaf staggered joint with supporting titanium doublers providing a tensile strength of at least 12,000 lb/in. The joint is particularly suited for joining sections of a cryogenic tank for spacecraft.
Abstract:
The present invention is a method for joining thermoplastic composite sandwich panels with thermoplastic welds (fusion bonds) made without autoclave processing of the joint. The preferred joint is a double interleaf staggered joint with supporting titanium doublers providing a tensile strength of at least 12,000 lb/in. The joint is particularly suited for joining sections of a cryogenic tank for spacecraft.
Abstract:
A relatively thin, flexible, impervious, sheet-like laminated building material comprising at least three continuous overlying layers of yielding material adapted to withstand very severe cold conditions, bonded together and consisting of at least one first mechanically strong supporting endmost layer having a thickness of from about 0.3 to about 0.6 mm; at least one impervious film-like layer having a thickness of from 0.04 to 0.10 mm and at least one second endmost lining layer providing at least a mechanical and at least temporary protection and having a thickness from about 0.3 to 0.6 mm.