Abstract:
A method of manufacturing a target structure is provided. The method includes: obtaining a model structure of an initial material composition having a predetermined geometry and dimensions; applying a slurry mixture into the model structure; and processing the model structure with the slurry mixture inside the model structure to convert the initial material composition of the model structure into a final material composition to obtain the target structure with the final material composition and having a geometry and dimensions that are substantially similar to the predetermined geometry and dimensions of the model structure.
Abstract:
Fuel rod designs and techniques are provided to encapsulate nuclear fuel pellets in nuclear fuel rods. The tubular cladding in the disclosed fuel rods includes silicon carbide and a metal filler structure formed of a metal that becomes molten during a nuclear reaction of the nuclear fuel pellets and located inside the tubular cladding to include a metal tube that fills in a gap between the nuclear fuel pellets and an interior side wall of the tubular cladding and structured to include a closed metal end cap at one end of the nuclear fuel pellets to leave a space between one end of the interior of the tubular cladding and the closed metal end cap of the metal filler structure as a reservoir.
Abstract:
Systems, structures, devices, and fabrication processes for ceramic matrix composites suitable for use in a nuclear reactor environment and other applications requiring materials that can withstand high temperatures and/or highly corrosive environments are disclosed. In one aspect, a ceramic composite structure is provided. The structure comprises a chamber including an external shell and a hollow space inside the external shell. The external shell includes an inner composite layer including a first composite structure, a middle composite layer placed outside of the inner composite layer, the middle composite layer including a second composite structure that is different from the first composite structure, and an outer monolithic layer that has a spatially uniform material property and placed outside of the middle composite layer.
Abstract:
The disclosed technology can be implemented to provide a method of determining a thermal conductivity of a sample. The method includes controlling a thermal source to increase a temperature of the thermal source to an elevated temperature above a phase change temperature of a phase change material, placing the sample between and in thermal contact with the phase change material below the phase change temperature and the thermal source to allow a thermal conduction from the thermal source to the phase change material through the sample to increase an initial temperature of the phase change material to the phase change temperature to cause the phase change material to transition from a first phase to a second phase, performing a measurement on at least one of the sample or the phase change material, and determining the thermal conductivity of the sample based on the measurement.
Abstract:
This patent document relates to systems, structures, devices, and fabrication processes for ceramic matrix composites suitable for use in a nuclear reactor environment and other applications requiring materials that can withstand high temperatures and/or highly corrosive environments. In one exemplary aspect, a method of joining and sealing ceramic structures is disclosed. The method comprises forming a joint of a ceramic structure and an end plug using a sealing material, wherein the end plug has a hole that goes through a top surface and a bottom surface of the end plug; filling the ceramic structure with a desired gas composition through the hole; heating a material into a molten form using a heat source; and directing the material into the hole, wherein the material solidifies to seal the end plug.
Abstract:
Disclosed are apparatuses, systems, methods, and devices for generating hydrogen pyrolysis of hydrocarbons (methane, diesel, JP8, etc.) in a reactor. The reactor includes multiple channels in parallel. A hydrocarbon flows in a channel and decomposes into hydrogen and carbon. Hydrogen gas flows out and some of the carbon will deposit on the channel wall. Once carbon deposition reaches a predetermined level, the hydrocarbon flow stops, and air or oxygen is caused to flow into the channels to oxidize carbon into carbon monoxide or carbon dioxide and supply heat to neighboring channels. Simultaneously, the hydrocarbon will flow into neighboring channels causing decomposition into hydrogen and carbon in the neighboring channels. When the carbon coating in the neighboring channels reaches a predetermined level, the gas flow is switched again to air or oxygen. In this way, each channel alternates between decomposing the hydrocarbon and oxidizing the deposited carbon.
Abstract:
Disclosed are apparatuses, systems, methods, and devices for generating hydrogen pyrolysis of hydrocarbons (methane, diesel, JP8, etc.) in a reactor. The reactor includes multiple channels in parallel. A hydrocarbon flows in a channel and decomposes into hydrogen and carbon. Hydrogen gas flows out and some of the carbon will deposit on the channel wall. Once carbon deposition reaches a predetermined level, the hydrocarbon flow stops, and air or oxygen is caused to flow into the channels to oxidize carbon into carbon monoxide or carbon dioxide and supply heat to neighboring channels. Simultaneously, the hydrocarbon will flow into neighboring channels causing decomposition into hydrogen and carbon in the neighboring channels. When the carbon coating in the neighboring channels reaches a predetermined level, the gas flow is switched again to air or oxygen. In this way, each channel alternates between decomposing the hydrocarbon and oxidizing the deposited carbon.
Abstract:
A device for generating a pulsed flow in a channel containing a circulating algal culture can include a plate that is pivotably mounted on the channel and an activator. A pulsed flow is generated in the channel by first positioning the plate to impede the flow of circulating algal culture and then rotating the plate to a submerged position. The pulsed flow can be employed to counteract the negative effects of bio-fouling on algae cultivation equipment. In another arrangement, a device for generating a pulsed flow in a sloped raceway that is in fluid communication with a sump can include a gate. In different embodiments, the gate can operate as a so-called “pinch gate” or as a so-called “overflow gate.” In another aspect, a variable rate pump, such as a centrifugal pump, a screw pump or an airlift pump, is described for establishing a pulsed flow in a channel.
Abstract:
A device for generating a pulsed flow in a channel containing a circulating algal culture can include a plate that is pivotably mounted on the channel and an activator. A pulsed flow is generated in the channel by first positioning the plate to impede the flow of circulating algal culture and then rotating the plate to a submerged position. The pulsed flow can be employed to counteract the negative effects of bio-fouling on algae cultivation equipment. In another arrangement, a device for generating a pulsed flow in a sloped raceway that is in fluid communication with a sump can include a gate. In different embodiments, the gate can operate as a so-called “pinch gate” or as a so-called “overflow gate.” In another aspect, a variable rate pump, such as a centrifugal pump, a screw pump or an airlift pump, is described for establishing a pulsed flow in a channel.
Abstract:
A system and method for using a pulse flow to circulate algae in an algae cultivation apparatus are provided. In order to counteract the negative effects of biofouling on algae cultivation equipment, a pulse flow is created to periodically move through an algae cultivation apparatus. The pulse flow will dislodge algae cells adhering to various surfaces of the apparatus, and it will also create turbulence to stir up any algae cells which may have settled onto the bottom of the apparatus. To produce an increased fluid flow rate required to create an effective pulse flow, a sump, which is periodically filled with drawn algal culture from the apparatus, is located at an elevated position above the apparatus. When released, the algal culture travels through a transfer pipe and into the apparatus with gravity causing the algal culture to flow at a very high rate.