Abstract:
Wind turbines and methods for controlling wind turbine loading are provided. In one embodiment, a method includes the steps of determining a current wind speed. The method further includes determining a tip speed ratio and a pitch angle that maximize a power coefficient under at least one of the following conditions: a thrust value is less than or equal to a pre-established maximum thrust, a generator speed value is less than or equal to a pre-established maximum generator speed, or a generator torque is less than or equal to a pre-established maximum generator torque. The method further includes calculating a desired generator speed value based on the current wind speed and a tip speed ratio. The method further includes calculating a desired generator power value based on the desired generator speed value.
Abstract:
A control system for mitigating loads on a wind turbine comprising a plurality of blades in yaw error events includes a yaw error calculation unit for calculating a yaw error of the wind turbine, a pitch angle reference command calculation unit for calculating a plurality of pitch angle reference commands respectively corresponding to the plurality of blades at least based on the calculated yaw error, and a controller for producing a plurality of pitch commands at least based on the plurality of pitch angle reference commands, to respectively regulate the pitch angles of the plurality of blades.
Abstract:
Methods are provided for controlling wind turbine loading. In one embodiment, a method includes the steps of determining a current thrust value for the wind turbine, calculating a thrust differential based on the current thrust value and a predetermined maximum thrust value, calculating a desired pitch offset value based on the thrust differential and a thrust sensitivity value, and adjusting a pitch of the wind turbine utilizing the pitch offset value.
Abstract:
Systems and methods for monitoring wind turbine loading are provided. In one embodiment, a system includes a main shaft, a bedplate, and a gearbox coupled to the main shaft and mounted to the bedplate. The gearbox includes an outer casing and a torque arm extending from the outer casing. The system further includes an isolation mount coupled to the torque arm, and a sensor configured to measure displacement of the torque arm. In another embodiment, a method includes operating the wind turbine, and detecting displacement of a torque arm of a gearbox of the wind turbine. The method further includes calculating a moment for a main shaft of the wind turbine based on the displacement of the torque arm.
Abstract:
Systems and methods for monitoring wind turbine loading are provided. In one embodiment, a system includes a main shaft, a bedplate, and a gearbox coupled to the main shaft and mounted to the bedplate. The gearbox includes an outer casing and a torque arm extending from the outer casing. The system further includes an isolation mount coupled to the torque arm, and a sensor configured to measure displacement of the torque arm. In another embodiment, a method includes operating the wind turbine, and detecting displacement of a torque arm of a gearbox of the wind turbine. The method further includes calculating a moment for a main shaft of the wind turbine based on the displacement of the torque arm.
Abstract:
Methods are provided for controlling wind turbine loading. In one embodiment, a method includes the steps of determining a current thrust value for the wind turbine, calculating a thrust differential based on the current thrust value and a predetermined maximum thrust value, calculating a desired pitch offset value based on the thrust differential and a thrust sensitivity value, and adjusting a pitch of the wind turbine utilizing the pitch offset value.
Abstract:
A control system for mitigating loads on a wind turbine comprising a plurality of blades in yaw error events includes a yaw error calculation unit for calculating a yaw error of the wind turbine, a pitch angle reference command calculation unit for calculating a plurality of pitch angle reference commands respectively corresponding to the plurality of blades at least based on the calculated yaw error, and a controller for producing a plurality of pitch commands at least based on the plurality of pitch angle reference commands, to respectively regulate the pitch angles of the plurality of blades.
Abstract:
A method and a system for managing loads on a wind turbine are provided. The method includes receiving a signal relative to a yaw misalignment of the wind turbine, generating a yaw error signal based on the yaw misalignment, and comparing the yaw error signal to a first predetermined yaw error threshold value. The method also includes regulating a speed of the rotor to a value determined by a predetermined tip speed ratio, reducing the yaw misalignment using a yaw control system, and restarting the wind turbine if the yaw error signal is reduced to less than a second predetermined yaw error threshold value within a predetermined period of time. The method further includes shutting down the wind turbine if the yaw error signal remains greater than the second predetermined yaw error threshold value beyond the predetermined period of time.
Abstract:
A method and a system for managing loads on a wind turbine are provided. The method includes receiving a signal relative to a yaw misalignment of the wind turbine, generating a yaw error signal based on the yaw misalignment, and comparing the yaw error signal to a first predetermined yaw error threshold value. The method also includes regulating a speed of the rotor to a value determined by a predetermined tip speed ratio, reducing the yaw misalignment using a yaw control system, and restarting the wind turbine if the yaw error signal is reduced to less than a second predetermined yaw error threshold value within a predetermined period of time. The method further includes shutting down the wind turbine if the yaw error signal remains greater than the second predetermined yaw error threshold value beyond the predetermined period of time.