Abstract:
A method for controlling a wind turbine based on aerodynamic performance maps that account for blade twist includes controlling the wind turbine based on at least one aerodynamic performance map. Further, the method includes determining at least one speed parameter of the wind turbine. Moreover, the method includes determining a blade torsional stiffness factor. Thus, the method further includes determining, via the processor, a twist correction factor for the aerodynamic performance map as a function of the at least one speed parameter and the blade torsional stiffness factor. The method then includes applying the twist correction factor to the at least one aerodynamic performance map to obtain an adjusted aerodynamic performance map. In addition, the method includes controlling the wind turbine based on the adjusted aerodynamic performance map.
Abstract:
A method is provided for operation of a wind turbine having rotor blades attached to a hub, wherein a controller compensates for torsionally induced blade twist. The method includes operating the wind turbine according to a rated power output curve and maximum design thrust value, and periodically or continuously detecting for induced torsional twist in the rotor blades. Upon determination of torsional twist being induced in the rotor blades, the method includes adjusting the maximum thrust value in the control program to compensate for the induced twist. The wind turbine controller then controls pitch of the rotor blades as a function of the increased maximum thrust value so that power output of the wind turbine is not unnecessarily limited or increased by the induced twist on the rotor blades.
Abstract:
A method for mitigating loads acting on a rotor blade of a wind turbine includes determining, via a state estimator of a controller, a blade state estimation of the rotor blade. The method also includes reconstructing, via the controller, one or more loading signals of the rotor blade from the blade state estimation using modal analysis such that the loading signal(s) include a lead time. Further, the method includes comparing the loading signal(s) of the rotor blade to a loading threshold. Moreover, the method includes implementing a control action based on the comparison such that the lead time provided by the loading signal(s) allows the control action to take effect before a damaging load occurs on the rotor blade.
Abstract:
The present disclosure is directed to a system and method for reducing vibrations of a tower (e.g. a tubular steep tower or a lattice tower structure) of a wind turbine. The method includes continuously determining a torsional movement of the tower based at least in part on measurements obtained from one or more sensors. Another step includes continuously determining, via a controller, a control command for one or more pitch drive mechanisms of the wind turbine based on the torsional movement. Thus, the method also includes operating the one or more pitch drive mechanisms based on the control command so as to dampen the torsional movement of the tower.
Abstract:
Methods are provided for controlling wind turbine loading. In one embodiment, a method includes the steps of determining a current thrust value for the wind turbine, calculating a thrust differential based on the current thrust value and a predetermined maximum thrust value, calculating a desired pitch offset value based on the thrust differential and a thrust sensitivity value, and adjusting a pitch of the wind turbine utilizing the pitch offset value.
Abstract:
A method for controlling operation of a wind turbine included within a power generation and delivery system is described. The method includes receiving, by a controller, a power command signal, wherein the power command signal indicates recovery from the grid contingency event; and increasing, in a non-uniform manner, power injected into a grid by a power conversion assembly in response to the power command signal wherein the controller controls the power conversion assembly.
Abstract:
A method for mitigating loads acting on a rotor blade of a wind turbine includes determining, via a state estimator of a controller, a blade state estimation of the rotor blade. The method also includes reconstructing, via the controller, one or more loading signals of the rotor blade from the blade state estimation using modal analysis such that the loading signal(s) include a lead time. Further, the method includes comparing the loading signal(s) of the rotor blade to a loading threshold. Moreover, the method includes implementing a control action based on the comparison such that the lead time provided by the loading signal(s) allows the control action to take effect before a damaging load occurs on the rotor blade.
Abstract:
Method for operating a wind turbine, the wind turbine including a wind characteristics sensor for measuring a wind characteristic and at least one wind turbine state sensor for measuring a state of the wind turbine, the method comprising: determining or adjusting (102) one or more wind characteristics relationships; and, performing (104) an operation phase, the operation phase including: measuring the wind characteristics with the wind characteristics sensor, thereby obtaining measured wind characteristics; measuring the state of the wind turbine with the at least one wind turbine state sensor and determining an estimated wind characteristics from the measured state of the wind turbine and parameters of the wind turbine; comparing the estimated wind characteristics to an expected wind characteristics determined from the measured wind characteristics, wherein the expected wind characteristics is determined based on the one or more wind characteristics relationships; and, operating or shutting down the wind turbine based at least in part on the comparison result.
Abstract:
A method for controlling a wind turbine based on aerodynamic performance maps that account for blade twist includes controlling the wind turbine based on at least one aerodynamic performance map. Further, the method includes determining at least one speed parameter of the wind turbine. Moreover, the method includes determining a blade torsional stiffness factor. Thus, the method further includes determining, via the processor, a twist correction factor for the aerodynamic performance map as a function of the at least one speed parameter and the blade torsional stiffness factor. The method then includes applying the twist correction factor to the at least one aerodynamic performance map to obtain an adjusted aerodynamic performance map. In addition, the method includes controlling the wind turbine based on the adjusted aerodynamic performance map.
Abstract:
Systems and methods for preventing excessive loading on a wind turbine are disclosed. The method includes: measuring an actual wind parameter upwind from the wind turbine using one or more sensors; providing the measured wind parameter to a processor; providing a plurality of wind turbine operating data to the processor; utilizing the plurality of operating data to determine an estimated wind turbine condition at the wind turbine; generating a control wind profile based on the actual wind parameter and the estimated wind turbine condition; and, implementing a control action based on the control wind profile to prevent excessive loading from acting on the wind turbine.