Abstract:
Components are disclosed which include a first component section and a second component section joined to form a hollow structure defining a plenum having an interior surface, wherein the component sections each include mating ridges joined together along the length of the plenum, and a corrosion-resistant cladding layer including a corrosion-resistant material overlaying the interior surface of the plenum. In one embodiment, the component is a gas turbine combustor fuel manifold. A method of forming the components includes applying corrosion-resistant segments including a corrosion-resistant material to each of the surfaces of the component sections, and joining the component sections to form the component, wherein joining the component sections includes fusing the corrosion-resistant segments into the corrosion-resistant cladding layer, and joining the mating ridges of the component sections.
Abstract:
A method of providing an oxidation resistant coating is disclosed. The method includes providing a substrate having a first surface and cooling holes. A portable coating device includes electro-spark deposition (ESD) equipment and an ESD torch connected with the ESD equipment. The ESD torch has an inert gas source and a rotary electrode conductive material. The rotary electrode is positioned within the ESD torch, and is shielded by an inert gas. The rotary electrode applies a compositionally controlled protective coating to the first surface of the substrate. Then the rotary electrode is inserted into the cooling hole and generates an electrospark between rotary ESD electrode and the substrate to form a rounded edge and deposit a coating of electrode material alloy at a cooling hole edge.
Abstract:
Laser cladding systems include a metal-filled wire comprising a metal shell surrounding a metal-filled core, wherein the metal-filled core comprises at least one of a powder metal or a fine wire metal, and, a laser that produces a laser beam directed onto at least a portion of a tip of the metal-filled wire to melt the metal shell and metal-filled core to produce a molten pool for depositing on a substrate.
Abstract:
A turbulator fabrication process and a fabricated article are provided. The turbulator fabrication process includes providing a system configured for directing a first fusion energy and a second fusion energy, positioning a turbulator material on a substrate, and directing the first fusion energy and the second fusion energy toward the turbulator material and the substrate. The directing of the first fusion energy and the second fusion energy modifies the turbulator material forming one or more turbulators on the substrate. The fabricated article includes a substrate and one or more turbulators formed on the substrate. Each of the one or more turbulators includes at least one root portion providing a concave transition between the substrate and the turbulator.
Abstract:
Methods for finishing a component include providing the component comprising one or more interior surfaces fluidly connected to one or more exterior surfaces, providing a plurality of magnetic particles, and applying a magnetic field so as to repeatedly move the magnetic particles against the interior surfaces and exterior surfaces of the component.
Abstract:
Additive manufacturing methods for fabricating a fiber-reinforced composite objects include providing at least a first layer of powder material, disposing a fiber material adjacent the at least first layer of powder material to form a fiber reinforcement layer, and applying a laser energy to the at least first layer of powder material so as to fuse the powder material into at least a first laser fused material layer adjacent the fiber reinforcement layer of the fiber-reinforced composite object.
Abstract:
A welding process, welding system and welded article are disclosed. The welding process includes directing energy from one or more fusion beams to join a first element to a second element and to join the first element to a third element. The directing of the energy is at a first lateral angle and a second lateral angle with respect to the first element. The welding system includes an energy emitting device, a first fusion beam and a second fusion beam. The first fusion beam and the second fusion beam are oriented to extend diagonally through an article. The laser welded article includes the first element joined to the second element, and the first element joined to the third element. A fillet weld is formed in a first inaccessible portion between the first element and the second element and a second inaccessible portion between the first element and the third element.
Abstract:
Manufactured articles, and methods of manufacturing enhanced wear protected components and articles. More particularly, wear protected components and articles, such as combustor components of turbine engines, and even more particularly enhanced wear protected micromixer tubes and assemblies thereof with one or more micromixer plates, the micromixer tubes having wear protection for enhanced performance and reduced wear related failure. Methods including surface treatment to enhance wear, including vacuum braze application of coatings to enhance surface hardness for wear benefits.
Abstract:
A process of welding a weld turbulator on an article includes forming a weld pool on a surface of the article using an arc welder, directing at least one beam of at least one beam welder to at least one fusion edge of the weld pool, and translating the arc welder and the beam welder in a weld direction to shape the weld pool into the weld turbulator extending in the weld direction and having the fusion edge. A turbulator welding system includes an arc welder arranged and disposed to provide an electric arc on a surface of an article to form a weld pool and at least one beam welder arranged and disposed to provide at least one beam to at least one fusion edge of the weld pool. A component includes an article having a surface and a weld turbulator on the surface of the article.
Abstract:
A braze gel includes a braze powder, a braze binder, and a viscosity reducer. The braze gel has a gel viscosity sufficiently low to permit dip coating of a component with the braze gel to apply a braze coating of the braze gel to the component. A brazing process includes applying the braze gel to a portion of a component. The brazing process also includes drying the braze gel to form a braze coating on the component to form a braze-coated component. A brazing article includes a component and a braze coating over a portion of the component. The component may have structural features having a spacing of less than about 5 mm and a depth of at least about 1 mm, which may be honeycomb cells. The component may be a turbine component.