Abstract:
A turbine nozzle segment includes a radially-inner endwall, a radially-outer endwall, and a pair of airfoil-shaped vanes extending between the radially-inner endwall and the radially-outer endwall. The back face of the radially-inner endwall and/or the back face of the radially-outer endwall has a pocket formed therein in an area between the pressure sidewall of the first vane and the suction sidewall of the second vane to enhance stiffness distribution between the second vane and the radially-inner endwall and/or radially-outer endwall.
Abstract:
A mid-span shroud assembly for a turbine blade airfoil includes a pressure side shroud body which is associated with a pressure side wall of the airfoil and a suction side shroud body which is associated with a suction side wall of the airfoil. At least one of the pressure side shroud body and the suction side shroud body defines a coupling spar which is formed to extend at least partially through a bore hole defined within the airfoil of the turbine blade.
Abstract:
A brazing method is disclosed. The brazing method includes providing a substrate, providing at least one groove in the substrate, providing a support member, positioning the support member over the at least one groove in the substrate, providing a braze material, applying the braze material over the support member to form an assembly, and heating the assembly to braze the braze material to the substrate. Another brazing method includes providing a preform, providing a wire mesh, pressing the wire mesh into the preform, heating the preform to form a braze material including the wire mesh, providing a substrate, providing at least one groove in the substrate, applying the braze material over the at least one groove in the substrate, then brazing the braze material to the substrate.
Abstract:
A method and system for providing cooling of a turbine component that includes a region to be cooled is provided. A recess is defined within the region to be cooled, and includes an inner face. At least one support projection extends from the inner face. The at least one support projection includes a free end. A cover is coupled to the region to be cooled, such that an inner surface of the cover is coupled to the free end of the at least one support projection, such that at least one cooling fluid passage is defined within the region to be cooled.
Abstract:
A method for fabricating an airfoil includes forming a diffuser section in an exterior surface of the airfoil. The diffuser section is defined by at least an outer surface and an inner surface that converge at a stop surface. The method also includes positioning a drilling element of a drilling device on the stop surface. The method further includes orienting the drilling element at a first angle relative to the exterior surface. The method also includes forming, using the drilling element, a cooling channel extending through the airfoil from the stop surface to an interior surface, thereby forming the cooling channel at substantially the first angle.
Abstract:
A brazing method is disclosed. The brazing method includes providing a substrate, providing at least one groove in the substrate, providing a support member, positioning the support member over the at least one groove in the substrate, providing a braze material, applying the braze material over the support member to form an assembly, and heating the assembly to braze the braze material to the substrate. Another brazing method includes providing a preform, providing a wire mesh, pressing the wire mesh into the preform, heating the preform to form a braze material including the wire mesh, providing a substrate, providing at least one groove in the substrate, applying the braze material over the at least one groove in the substrate, then brazing the braze material to the substrate.
Abstract:
A brazing method is disclosed. The brazing method includes providing a substrate, providing at least one groove in the substrate, providing a support member, positioning the support member over the at least one groove in the substrate, providing a braze material, applying the braze material over the support member to form an assembly, and heating the assembly to braze the braze material to the substrate. Another brazing method includes providing a preform, providing a wire mesh, pressing the wire mesh into the preform, heating the preform to form a braze material including the wire mesh, providing a substrate, providing at least one groove in the substrate, applying the braze material over the at least one groove in the substrate, then brazing the braze material to the substrate.
Abstract:
A three-dimensional printing process, a swirling device, and a thermal management process are disclosed. The three-dimensional printing process includes distributing a material to a selected region, selectively laser melting the material, and forming a swirling device from the material. The swirling device is printed by selective laser melting. The thermal management process includes providing an article having a swirling device printed by selective laser melting, and cooling a portion of the article by transporting air through the swirling device.
Abstract:
A method and system for providing cooling of a turbine component that includes a region to be cooled is provided. A recess is defined within the region to be cooled, and includes an inner face. At least one support projection extends from the inner face. The at least one support projection includes a free end. A cover is coupled to the region to be cooled, such that an inner surface of the cover is coupled to the free end of the at least one support projection, such that at least one cooling fluid passage is defined within the region to be cooled.