Abstract:
A switch of an inverter of an X-ray tube power supply including: at least four MOSFETs aligned in parallel; a plurality of intermediate radiators positioned between the MOSFETs in order to separate two successive MOSFETs; at least four snubbers positioned in parallel, each being positioned beside a MOSFET; a control unit of said switch positioned so that the succession of MOSFETs is positioned between the alignment of snubbers and the control unit.
Abstract:
A high voltage connector is provided. The high voltage connector includes multiple electrical conductors, and at least one autotransformer. The high voltage connector is configured to couple a high voltage cable to an X-ray tube.
Abstract:
A system for grid control of an electromagnetic ray tube is provided. The system includes a power source, a rectifier, and a grid conductor. The power source is disposed apart from the electromagnetic ray tube and operative to generate an AC current. The rectifier is integrated into the electromagnetic ray tube and electrically coupled to a grid electrode of the electromagnetic ray tube. The grid conductor electrically couples the power source to the rectifier. The rectifier is operative to convert the AC current to a DC current that powers the grid electrode.
Abstract:
A system for controlling a multilevel soft switching power converter including a DC bus, a pair of switching arms, and a controller is disclosed. The DC bus has a positive rail and a negative rail operable to have a voltage potential present across the DC bus. Each switching arm is connected between the positive rail and the negative rail and includes four soft switches. Each soft switch is connected between the positive rail, the negative rail, or one of three intermediate connections between the positive and negative rails. Each soft switch is also controlled by a gating signal. A flying capacitor is connected between the first intermediate connection and the third intermediate connection and an output terminal is connected at the second intermediate connection of each switching arm. A controller is operable to generate each of the gating signals utilizing at least three control routines.
Abstract:
A high voltage connector is provided. The high voltage connector includes multiple electrical conductors, and at least one autotransformer. The high voltage connector is configured to couple a high voltage cable to an X-ray tube.
Abstract:
An inverter for a computed tomography (CT) system is provided. The inverter includes a hybrid switch. The hybrid switch includes a silicon carbide metal-oxide-semiconductor field-effect transistor (SiC MOSFET) portion, an insulated-gate bipolar transistor (IGBT) portion, a first gate associated within the SiC MOSFET portion, and a second gate associated with the IGBT portion. The SiC MOSFET portion and the IGBT portion of the hybrid switch are configured to be independently controlled via the first gate and the second gate.
Abstract:
A switch of an inverter of an X-ray tube power supply including: at least four MOSFETs aligned in parallel; a plurality of intermediate radiators positioned between the MOSFETs in order to separate two successive MOSFETs; at least four snubbers positioned in parallel, each being positioned beside a MOSFET; a control unit of said switch positioned so that the succession of MOSFETs is positioned between the alignment of snubbers and the control unit.
Abstract:
A system for controlling a multilevel soft switching power converter including a DC bus, a pair of switching arms, and a controller is disclosed. The DC bus has a positive rail and a negative rail operable to have a voltage potential present across the DC bus. Each switching arm is connected between the positive rail and the negative rail and includes four soft switches. Each soft switch is connected between the positive rail, the negative rail, or one of three intermediate connections between the positive and negative rails. Each soft switch is also controlled by a gating signal. A flying capacitor is connected between the first intermediate connection and the third intermediate connection and an output terminal is connected at the second intermediate connection of each switching arm. A controller is operable to generate each of the gating signals utilizing at least three control routines.