摘要:
A controller for operating a rod pumping unit includes a processor configured to operate the rod pumping unit at a pumping profile speed. The processor is further configured to compute a first downhole dynamometer card from surface measurements at the rod pumping unit. The processor is further configured to compute a second downhole dynamometer card from the surface measurements. The processor is further configured to validate at least one of the first downhole dynamometer card and the second downhole dynamometer card based on a rod pumping unit condition.
摘要:
Systems and methods are provided for an automation system. The systems and methods calculate a motion trajectory of a manipulator and an end-effector. The end-effector is configured to grasp a target object. The motion trajectory defines successive positions of the manipulator and the end-effector along a plurality of via-points toward the target object. The systems and methods further acquire force/torque (F/T) data from an F/T sensor associated with the end-effector, and adjusts the motion trajectory based on the F/T data.
摘要:
A system is provided that includes a machine assembly, a first imaging sensor, an encoder, and one or more processors. The machine assembly is movable to actuate a brake lever of a vehicle in order to open a valve of an air brake system. The first imaging sensor is positioned to acquire two-dimensional perception information of a working environment that includes the brake lever during movement of the machine assembly towards the brake lever. The encoder detects a displacement of the machine assembly relative to a reference position of the machine assembly. The one or more processors estimate a target position of the brake lever relative to the machine assembly during movement of the machine assembly based on the two-dimensional perception information and the displacement. The one or more processors drive the movement of the machine assembly towards the target position of the brake lever.
摘要:
C-arm systems and method for making and using continuous C-arm spin acquisition trajectories for dynamic imaging and improved image quality are described. In such systems and methods, a C-arm gantry, coupled to a C-arm support assembly, is adapted to retain an x-ray source and an x-ray detector. The C-arm gantry is selectively rotatable relative to the C-arm support assembly about both a C-arm axis and a pivot-axis to displace the x-ray source and the x-ray detector along a continuous C-arm spin trajectory. The C-arm system is adapted for continuous three-dimensional acquisition of data along the continuous C-arm spin trajectory including a plurality of shorts arcs and a plurality of long arcs. The C-arm system is adapted for continuous three-dimensional acquisition of data along the continuous C-arm spin trajectory to provide continuous three-dimensional imaging of dynamic processes.
摘要:
A method includes, in a bi-plane interventional imaging system, moving a first C-arm supporting a first X-ray source and a first X-ray detector about first and second axes while obtaining a plurality of first X-ray attenuation data sets relating to a subject of interest; moving a second C-arm, positioned crosswise with respect to the first C-arm and supporting a second X-ray source and a second X-ray detector, about the first axis while obtaining a plurality of second X-ray attenuation data sets relating to the subject of interest; and synchronizing the movement of the first and second C-arms to avoid collision therebetween.
摘要:
A robot system is provided that includes a base, an articulable arm, a visual acquisition unit, and at least one processor. The articulable arm extends from the base and is configured to be moved toward a target. The visual acquisition unit is mounted to the arm or the base, and acquires environmental information. The at least one processor is operably coupled to the arm and the visual acquisition unit, the at least one processor configured to: generate an environmental model using the environmental information; select, from a plurality of planning schemes, using the environmental model, at least one planning scheme to translate the arm toward the target; plan movement of the arm toward the target using the selected at least one planning scheme; and control movement of the arm toward the target using the at least one selected planning scheme.
摘要:
Method includes executing a dynamic decision-making process that includes (a) receiving environmental data and (b) determining a fused ensemble based on the environmental data and a state parameters of a current state of a machine assembly. The fused ensemble includes communications from a system interface to the operator for the state parameters. The communications inform an operator about the state parameters and includes at least one of a visual signal, an audible signal, or a tactile signal from the system interface. The decision-making process also includes (c) communicating the fused ensemble to the operator through the system interface and (d) repeating (a)-(c) while the machine assembly is in the current state. The fused ensemble is configured to change based on changes in the environmental data.
摘要:
A system includes a machine assembly, an imaging sensor, an encoder, and one or more processors. The machine assembly is movable to actuate a brake lever of a vehicle in order to open a valve of an air brake system of the vehicle. The imaging sensor acquires perception information of a working environment that includes the brake lever. The encoder detects a displaced position of the machine assembly relative to a reference position of the machine assembly. The one or more processors detect a position of the brake lever relative to the machine assembly based on the acquired perception information and the detected displacement of the arm. The one or more processors generate a motion trajectory for the machine assembly that provides a path to the brake lever. The one or more processors drive movement of the machine assembly along the motion trajectory towards the brake lever.
摘要:
A control system for operating a beam pumping unit includes a strain gauge and a beam pumping unit controller. The strain gauge is coupled to a Samson post of the beam pumping unit, and is configured to measure a Samson post strain. The beam pumping unit controller is coupled to the strain gauge and is configured to operate the beam pumping unit to induce a variable load on a rod of the beam pumping unit. The beam pumping unit controller is further configured to receive the Samson post strain from the strain gauge and compute the variable load based on the Samson post strain.
摘要:
A robotic system validates brake bleeding by detecting one or more forces generated by a machine assembly acting to move a brake lever of a vehicle in order to open a valve of an air brake system of the vehicle. The system also detects displacement of the machine assembly as the machine assembly acts to move the brake lever, monitors one or more sounds generated one or more of during or after the machine assembly acts to move the brake lever, and determines that the brake lever has been moved to a position to open the valve of the air brake system to release the air brake system based on the one or more forces that are detected, the displacement that is detected, and/or the one or more sounds that are monitored.