Abstract:
A system includes a gas turbine having a turbine shaft disposed along a rotational axis, a turbine casing disposed circumferentially about the turbine shaft, a combustion gas path disposed between the turbine shaft and the turbine casing, a turbine stage disposed in the combustion gas path, wherein the turbine stage includes a plurality of turbine vanes disposed upstream from a plurality of turbine blades. The system includes an isothermal expansion system coupled to the turbine stage. The isothermal expansion system includes a plurality of fluid injectors configured to vary axial positions of combustion within a turbine stage expansion of the turbine stage to reduce temperature variations over the turbine stage expansion, wherein at least one fluid injector of the plurality of fluid injectors is coupled to each of the plurality of turbine vanes.
Abstract:
A nozzle for a turbine system includes an airfoil, an inner sidewall, and an outer sidewall. Each of the inner sidewall and outer sidewall includes a peripheral edge defining a pressure side slash face, a suction side slash face, a leading edge face, and a trailing edge face. At least one of the inner sidewall pressure side slash face, the inner sidewall suction side slash face, the outer sidewall pressure side slash face, or the outer sidewall suction side slash face includes a first swept surface extending at a first angle relative to a nominal slash face angle and a second swept surface extending at a second angle relative to the nominal slash face angle. The first and second swept surfaces meet at an arc having a peak that is circumferentially aligned with a stiffening member extending circumferentially on a respective sidewall.
Abstract:
Embodiments of the present disclosure are directed towards a system including a gas turbine engine configured to produce exhaust gas, a selective catalytic reduction system configured to produce processed exhaust gas from the exhaust gas, and a control system. The control system includes a first controller configured to regulate operation of the selective catalytic reduction system, a second controller configured to regulate operation of the gas turbine engine, and an optimizer configured to coordinate operation of the first controller and the second controller to simultaneously maximize a first level of an emissions compound in the exhaust gas and regulate injection of a reductant into the selective catalytic reduction system to reduce a second level of the emissions compound in the processed exhaust gas to a first desired level of the emissions compound in the processed exhaust gas.
Abstract:
A fixture for drilling a hole in a superalloy turbine blade includes a mount to selectively hold a root of the superalloy turbine blade with the superalloy turbine blade extending from the mount. The fixture may also include an actuator to apply a force to elastically deform at least a portion of the superalloy turbine blade when held by the mount from a relaxed, initial position to an elastically deformed position, the at least a portion of the superalloy turbine blade having a curvature in the elastically deformed position not present in the relaxed, initial position. The fixture may also include a drill guide configured to guide a drilling element into the superalloy turbine blade in the elastically deformed position.
Abstract:
A method includes applying a force to elastically deform at least a portion of a superalloy turbine blade from a relaxed, initial position to an elastically deformed position. The at least a portion of the superalloy turbine blade has a curvature in the elastically deformed position not present in the relaxed, initial position. A hole is drilled generally span-wise through the at least a portion of the superalloy turbine blade in the elastically deformed position, and when the force is released, the superalloy turbine blade returns to the relaxed, initial position and the hole takes on a hole curvature within the at least a portion of the superalloy turbine blade.
Abstract:
The present disclosure is directed to a rotor blade for a turbomachine. The rotor blade includes an airfoil having a leading edge, a trailing edge, a root, and a tip. The airfoil defines a chord extending from the leading edge to the trailing edge and a span extending from the root to the tip. A first particle-filled damper is positioned within the airfoil between fifty percent of the chord and one hundred percent of the chord.
Abstract:
A drilling tool for use in machining a conductive work piece is provided. The tool includes a body portion, a forward electrode coupled to the body portion, and at least one side electrode coupled to the body portion. When electric current is supplied to the forward electrode and the at least one side electrode, material adjacent to the forward electrode and the at least one side electrode is removed from the conductive work piece. Further, the forward electrode and the at least one side electrode are selectively operable to form a bore hole having a variable geometry that extends through the conductive work piece when the material is removed therefrom.
Abstract:
Various embodiments include a heat transfer device, while other embodiments include a turbine component. In some cases, the device can include: a body portion having an inner surface and an outer surface, the inner surface defining an inner region; at least one aperture in the body portion, the at least one aperture positioned to direct fluid from the inner region through the body portion; and at least one fluid receiving feature formed in the outer surface of the body portion, the at least one fluid receiving feature positioned to receive post-impingement fluid from the at least one aperture, wherein the at least one aperture does not define any portion of the at least one fluid receiving feature, and the at least one fluid receiving feature segregates relatively higher velocity post-impingement fluid from relatively lower velocity fluid within an impingement cross-flow region.
Abstract:
The present application thus provides an active cooling system for a compressor and a turbine of a gas turbine engine. The active cooling system may include an air extraction pipe extending from the compressor to the turbine, a heat exchanger positioned about the air extraction pipe, and an external air cooling system in communication with the air extraction pipe.
Abstract:
Rotor blades, vibrational dampening elements, and methods are provided. A rotor blade includes a platform, a shank extending radially inward from the platform, and an airfoil extending radially outward from the platform. One or more fluid chambers are defined within the rotor blade. Glass is disposed within each fluid chamber of the one or more fluid chambers. A mass is disposed within each fluid chamber of the one or more fluid chambers. The mass is movable within the glass relative to the airfoil.