Abstract:
A neuroactivity monitoring system includes a camera configured to acquire image data of a patient positioned on the patient support and a monitoring device in communication with the camera. The monitoring device uses the acquired image data of the camera to identify and track patient landmarks, such as facial and/or posture landmarks, and, based on the tracked movement, characterize patient neuroactivity.
Abstract:
In accordance with one aspect of the present technique, a method is disclosed. The method includes applying a mechanical perturbation to a tissue region using a displacement device. The method further includes calculating a compression impedance of the tissue region in response to applying the mechanical perturbation. The method further includes retracting the displacement device and calculating a retraction impedance of the tissue region in response to retracting the displacement device. The method also includes determining a hydration level of the tissue region based on at least one of the compression impedance and the retraction impedances.
Abstract:
One system includes a pattern generator that generates one or more excitation patterns suitable for probing a hydration level of a tissue of a subject at one or more depths from a surface of the subject into an interrogation region. Each of the excitation patterns has a spatial sensitivity at one of the one or more predetermined depths. A data analysis module receives one or more measured responses of the subject at a plurality of electrodes to excitation applied by the plurality of electrodes based on the one or more excitation patterns and determines one or more hydration changes at the one or more depths within the subject based on the measured responses. Each of the measured responses corresponds to the one of the one or more predetermined depths for which the applied excitation pattern has spatial sensitivity.
Abstract:
A neuroactivity monitoring system includes a camera configured to acquire image data of a patient positioned on the patient support and a monitoring device in communication with the camera. The monitoring device uses the acquired image data of the camera to identify and track patient landmarks, such as facial and/or posture landmarks, and, based on the tracked movement, characterize patient neuroactivity.
Abstract:
Implementations are disclosed for monitoring a state or change in state of a physiological parameter based on measured impedance data. In certain implementations, no images are reconstructed from the impedance data. In certain implementations, a metric (e.g., distinguishability, likelihood ratios, and so forth) may be computed and compared to reference metrics or thresholds, such as for changes over time or in comparison to a standard to determine the presence or absence of a physiological state of interest or of a change in such state.
Abstract:
A neuroactivity monitoring system includes a camera configured to acquire image data of a patient positioned on the patient support and a monitoring device in communication with the camera. The monitoring device uses the acquired image data of the camera to identify and track patient landmarks, such as facial and/or posture landmarks, and, based on the tracked movement, characterize patient neuroactivity.
Abstract:
Methods for measuring liver fat mass are provided. One method includes acquiring dual-energy two-dimensional (2D) scan information from a dual-energy X-ray scan of a body and generating a dual-energy X-ray image of the body using the 2D scan information. The method further includes identifying a region of interest using the dual-energy X-ray image and determining a subcutaneous fat mass for each of a plurality of sections of the region of interest. The method also includes determining a liver fat mass for the region of interest based on the determined subcutaneous fat mass for each of the plurality of sections.
Abstract:
The subject matter of the present disclosure generally relates to techniques for neuromodulation of a tissue that include applying energy (e.g., ultrasound energy) into the tissue to cause altered activity at a synapse between a neuron and a non-neuronal cell.
Abstract:
There is set forth herein an apparatus comprising: a non-contacting array of sensors adapted for positioning at a position spaced from and proximate a position of a patient; and a signal processing circuit in communication with the array of sensors, wherein the signal processing circuit is configured for: generating a plurality of time varying signals using the array of sensors; processing the plurality of time varying signals; and outputting one or more indicator based on the processing. The apparatus can be adapted for use in a variety of applications including emergency applications such as live birth applications in which neonate resuscitation protocols are observed.
Abstract:
In accordance with one aspect of the present technique, a method is disclosed. The method includes applying a mechanical perturbation to a tissue region using a displacement device. The method further includes calculating a compression impedance of the tissue region in response to applying the mechanical perturbation. The method further includes retracting the displacement device and calculating a retraction impedance of the tissue region in response to retracting the displacement device. The method also includes determining a hydration level of the tissue region based on at least one of the compression impedance and the retraction impedances.