Abstract:
In accordance with one aspect of the present technique, a method is disclosed. The method includes applying a mechanical perturbation to a tissue region using a displacement device. The method further includes calculating a compression impedance of the tissue region in response to applying the mechanical perturbation. The method further includes retracting the displacement device and calculating a retraction impedance of the tissue region in response to retracting the displacement device. The method also includes determining a hydration level of the tissue region based on at least one of the compression impedance and the retraction impedances.
Abstract:
Techniques for accurate positioning of an energy application device for neuromodulation treatment protocols are provided. A neuromodulation positioning patch is applied to a patient's skin. The energy application device is coupled to a frame of the neuromodulation positioning patch to position a transducer of the energy application device within an opening at a treatment position within the opening. The frame is also coupled to a removable dock for an imaging probe. When the frame is coupled to the removable dock the frame of the neuromodulation positioning patch, acquires image data through the opening to identify or verify the treatment position.
Abstract:
The present discussion relates to structures and devices to facilitate application of an ultrasound therapy beam to a target anatomic region in a replicable manner. In certain aspects, adjustable positioning structures are described that allow a general probe positioning structure to be configured for a specific patient in a manner that allows the device to be used repeatedly to target the anatomic region, even when in non-clinical settings. In other aspects, a probe positioning structure is fabricated that is specific to a respective patient anatomy, such that use of the probe positioning structure provides repeatable targeting of the target anatomic region, even when in non-clinical settings.
Abstract:
The present discussion relates to structures and devices to facilitate application of an ultrasound therapy beam to a target anatomic region in a replicable manner. In certain aspects, adjustable positioning structures are described that allow a general probe positioning structure to be configured for a specific patient in a manner that allows the device to be used repeatedly to target the anatomic region, even when in non-clinical settings. In other aspects, a probe positioning structure is fabricated that is specific to a respective patient anatomy, such that use of the probe positioning structure provides repeatable targeting of the target anatomic region, even when in non-clinical settings.
Abstract:
Embodiments of the present disclosure relate to techniques for accurate positioning of an energy application device for neuromodulation treatment protocols. In one embodiment, a neuromodulation positioning patch is applied to a patient's skin. The energy application device is configured to couple to a frame of the neuromodulation positioning patch to position a transducer of the energy application device within an opening at a treatment position within the opening. In one embodiment, the frame is also configured to couple to a removable dock for an imaging probe that, when coupled to the removable dock and, in turn, the frame of the neuromodulation positioning patch, is configured to acquire image data through the opening to identify or verify a treatment position.
Abstract:
In accordance with one aspect of the present technique, a method is disclosed. The method includes applying a mechanical perturbation to a tissue region using a displacement device. The method further includes calculating a compression impedance of the tissue region in response to applying the mechanical perturbation. The method further includes retracting the displacement device and calculating a retraction impedance of the tissue region in response to retracting the displacement device. The method also includes determining a hydration level of the tissue region based on at least one of the compression impedance and the retraction impedances.
Abstract:
An array of emitters includes a device substrate having first and second sides, a thermally and electrically conductive layer disposed on the first side of the device substrate, and an interconnect layer disposed on a first plurality of portions of the second side of the device substrate. The array of the emitters further includes a plurality of emitters disposed in a second plurality of portions of the device substrate, where the plurality of emitters is electrically coupled to the thermally and electrically conductive layer. Also, the array of the emitters includes a plurality of wirebond contacts configured to electrically couple a portion of the interconnect layer to a corresponding emitter of the plurality of emitters, and a plurality of encapsulations, where one or more encapsulations of the plurality of encapsulations are disposed on at least a portion of a corresponding wirebond contact of the plurality of wirebond contacts.
Abstract:
An array of emitters includes a device substrate having first and second sides, a thermally and electrically conductive layer disposed on the first side of the device substrate, and an interconnect layer disposed on a first plurality of portions of the second side of the device substrate. The array of the emitters further includes a plurality of emitters disposed in a second plurality of portions of the device substrate, where the plurality of emitters is electrically coupled to the thermally and electrically conductive layer. Also, the array of the emitters includes a plurality of wirebond contacts configured to electrically couple a portion of the interconnect layer to a corresponding emitter of the plurality of emitters, and a plurality of encapsulations, where one or more encapsulations of the plurality of encapsulations are disposed on at least a portion of a corresponding wirebond contact of the plurality of wirebond contacts.
Abstract:
An array of emitters includes a device substrate having first and second sides, a thermally and electrically conductive layer disposed on the first side of the device substrate, and an interconnect layer disposed on a first plurality of portions of the second side of the device substrate. The array of the emitters further includes a plurality of emitters disposed in a second plurality of portions of the device substrate, where the plurality of emitters is electrically coupled to the thermally and electrically conductive layer. Also, the array of the emitters includes a plurality of wirebond contacts configured to electrically couple a portion of the interconnect layer to a corresponding emitter of the plurality of emitters, and a plurality of encapsulations, where one or more encapsulations of the plurality of encapsulations are disposed on at least a portion of a corresponding wirebond contact of the plurality of wirebond contacts.