Abstract:
A wind turbine includes multiple blades, multiple Micro Inertial Measurement Units (MIMUs) for sensing parameter signals of the blades, and a control system. The control system includes a blade bending moment calculation unit, a blade bending moment error signal calculation unit, and a pitch angle compensation command calculation unit. The blade bending moment calculation unit is used for calculating blade bending moment values of the blades based at least on the sensed parameters. The blade bending moment error signal calculation unit is used for calculating blade bending moment error signals of the blades based on the calculated blade bending moment values of the blades and multiple blade bending moment commands. The pitch angle compensation command calculation unit is used for calculating pitch angle compensation commands of the blades based on the calculated blade bending moment error signals to adjust pitch angles of the blades respectively.
Abstract:
A method for combustion tuning, comprises collecting exhaust parameters indicating combustion status of a boiler by a sensor array; determining whether the exhaust parameters of the boiler match a preset optimization target; and optimizing combustion, if the exhaust parameters do not match the preset optimization target by selecting a model from a model repository based on a current boiler condition, wherein the model corresponds to a relationship between model input variables and the exhaust parameters; determining at least one optimized model input variable of the boiler for realizing the optimization target, based on the selected model; and adjusting actuators of the boiler according to the optimized model input variable.
Abstract:
A wind turbine including a plurality of blades, a micro inertial measurement unit installed on each blade and configured to sense a plurality of detection parameter signals at corresponding installation positions, and a monitoring system configured to monitor an operating state of the blades. The monitoring system includes a signal processing unit configured to obtain a processing parameter signal through calculation based on the detection parameter signals, a signal analyzing unit configured to analyze each analysis parameter signal, selected from the plurality of detection parameter signals and the processing parameter signal, to obtain a fault estimation signal, used to estimate whether a corresponding blade works in a fault state, and a fault evaluating unit configured to evaluate, based on a plurality of fault estimation signals, whether a corresponding blade fails or a probability that the corresponding blade fails.