Abstract:
An automatic vehicle equipment control system and methods thereof are provided, the system includes at least one imager configured to acquire a continuous sequence of high dynamic range single frame images, a processor, a color spectral filter array including a plurality of color filters, at least a portion of which are different colors, and pixels of an imager pixel array being in optical communication with substantially one spectral color filter, and a lens, wherein the imager is configured to capture a non-saturated image of nearby oncoming headlamps and at least one of a diffuse lane marking and a distant tail lamp in one image frame of the continuous sequence of high dynamic range single frame images, and the system configured to detect at least one of said highway markings and said tail lamps, and quantify light from the oncoming headlamp from data in the one image frame.
Abstract:
The disclosure provides for a scanning apparatus. The scanning apparatus may be configured to capture identifying information of a user and may comprise one or more infrared emitters, at least one image sensor configured to capture image data in a field of view, and a controller in communication with the scanning apparatus. The controller may be configured to activate the one or more infrared emitters, control the at least one image sensor to capture a first image in the field of view, deactivate the one or more infrared emitters, and control the at least one image sensor to capture a second image in the field of view.
Abstract:
A system for calibrating a driver monitoring system in a vehicle comprises a rearview assembly comprising a housing, a mount secured to a vehicle surface, and a barrel extending between the housing and the mount; an imager disposed in the rearview assembly; a processor in communication with the imager; a memory comprising a file containing information on stationary landmarks proximate the imager; and a controller operable to: receive images of the vehicle's interior and calibrate the imager by identifying a substantially stationary landmark in a first image used during an initial calibration; wherein the controller is configured to re-calibrate the driver monitoring operations based, at least in part, on a detection of the substantially stationary landmark being in a different location in a second image relative to the first image. One of the ends of the barrel is connected with a moveable joint.
Abstract:
A lighting system for a vehicle is disclosed. The lighting system comprises an imager configured to capture image data in a plurality of image frames in a rearward field of view. The system further comprises at least one headlamp configured to output an emission of light at a plurality of elevations and a controller. The controller is in communication with the imager and the headlamp. The controller is operable to process the image data to identify features in a first frame and a second frame. The controller is further operable to identify a movement of the features from the first frame to the second frame and adjust the elevation of the output emission in response to the movement.
Abstract:
The disclosure provides for a scanning apparatus. The scanning apparatus may be configured to capture identifying information of a user and may comprise one or more infrared emitters, at least one image sensor configured to capture image data in a field of view, and a controller in communication with the scanning apparatus. The controller may be configured to activate the one or more infrared emitters, control the at least one image sensor to capture a first image in the field of view, deactivate the one or more infrared emitters, and control the at least one image sensor to capture a second image in the field of view.
Abstract:
A lighting system for a vehicle is disclosed. The lighting system comprises an imager configured to capture image data in a plurality of image frames in a rearward field of view. The system further comprises at least one headlamp configured to output an emission of light at a plurality of elevations and a controller. The controller is in communication with the imager and the headlamp. The controller is operable to process the image data to identify features in a first frame and a second frame. The controller is further operable to identify a movement of the features from the first frame to the second frame and adjust the elevation of the output emission in response to the movement.
Abstract:
A lighting system for a vehicle is disclosed. The lighting system comprises an imager configured to capture image data in a plurality of image frames in a rearward field of view. The system further comprises at least one headlamp configured to output an emission of light at a plurality of elevations and a controller. The controller is in communication with the imager and the headlamp. The controller is operable to process the image data to identify features in a first frame and a second frame. The controller is further operable to identify a movement of the features from the first frame to the second frame and adjust the elevation of the output emission in response to the movement.
Abstract:
An automatic vehicle equipment control system and methods thereof are provided, the system includes at least one imager configured to acquire a continuous sequence of high dynamic range single frame images, a processor, a color spectral filter array including a plurality of color filters, at least a portion of which are different colors, and pixels of an imager pixel array being in optical communication with substantially one spectral color filter, and a lens, wherein the imager is configured to capture a non-saturated image of nearby oncoming headlamps and at least one of a diffuse lane marking and a distant tail lamp in one image frame of the continuous sequence of high dynamic range single frame images, and the system configured to detect at least one of said highway markings and said tail lamps, and quantify light from the oncoming headlamp from data in the one image frame.