Abstract:
A flexible circuit board for being inserted into an in-vivo imaging device is provided. The flexible circuit board may include a plurality of flexible installation units connected to one another through flexible connection units. The flexible installation units may be capable of having electrical components disposed thereon at a size suitable for being included in an in-vivo imaging device which may be inserted into a body lumen, e.g., a capsule endoscope. An in-vivo imaging device which may enclose such a full-flexible circuit board is also provided.
Abstract:
The invention provides a device for in-vivo imaging, for example, using an in-vivo imaging device including an imager a lens and an illumination source, all positioned behind a single viewing window. The in-vivo imaging device may include an element to block light from reaching a point of reflection on the inner surface of the viewing window, thereby preventing the light from being received by the imager.
Abstract:
In-vivo devices, systems and methods for the detection of blood within in-vivo bodily fluids. The methods include irradiating in-vivo fluids passing through a gap in a housing of an in-vivo device introduced to the GI tract of a subject with a plurality of illumination sources positioned on a first side of a gap; detecting with at least one light detector positioned on the opposite side of the gap and facing the illumination sources, light irradiated by the illumination sources; transmitting a plurality of values representing the light detected over time; converting these values to blood concentration values over time, and comparing the blood concentration values to a predetermined threshold value. Based on the comparison, the method includes determining the type of bleeding profile, such that if a plurality of blood concentration values measured consecutively is above the threshold value, the bleeding profile indicates bleeding.
Abstract:
In-vivo medical devices, systems and methods of operating such devices include a permanent magnetic assembly interacting with external magnetic fields for magnetically maneuvering said device to a desired location along a patient's GI tract, and anchoring said devices to the desired location for a period of time. The in-vivo medical device includes illumination sources, an optical system, and an image sensor for imaging the GI tract and thus assisting in locating the desired location. Some in-vivo medical devices include a concave window, which enables better imaging of small areas along the tissue. Furthermore, in-vivo devices with a concave window enable carrying operating tools without damaging the tissue of the GI tract, since prior to operation, the tools protrude from the concave window but remain behind the ends of the edges of the concave window.