Abstract:
A system and method for acquiring images containing spatial and spectral information of an object include acquiring defocused images using an optical system based on extended depth of field. The optical system further includes a filter array comprising an array of at least six different sub-filters that are arranged such that any group of four immediately adjacent sub-filters includes at least one red sub-filter, at least one green sub-filter and at least one blue sub-filter. The filter array is located at the aperture stop of the optical system. A coded mask is located at the focal plane of the optical system, and an imager is located beyond the focal plane such that images acquired by the imager are defocused. The images are refocused, and spectral and spatial information is restored by designated software.
Abstract:
A swallowable in-vivo device comprising a shell formed with at least one inlet extending across a shell wall and configured for allowing ingress of fluid at least into the shell; the shell accommodates therein a lateral flow (LF) arrangement configured for absorbing the fluid; the LF arrangement comprises a test zone configured for coming into contact, in-vivo, with a predetermined N substance present in the fluid or a compound comprising the substance, thereby causing a change in at least one property of the test zone; the shell further accommodates a sensor configured for sensing, in-vivo, the at least one property, at least when changed by interaction with the fluid; the LF arrangement has at least one curved segment, and at least one exposure portion juxtaposed with the inlet, configured for absorbing the fluid passing through the inlet into the shell.
Abstract:
The invention provides a device for in-vivo imaging, for example, using an in-vivo imaging device including an imager a lens and an illumination source, all positioned behind a single viewing window. The in-vivo imaging device may include an element to block light from reaching a point of reflection on the inner surface of the viewing window, thereby preventing the light from being received by the imager.
Abstract:
In-vivo devices, systems and methods for the detection of blood within in-vivo bodily fluids. The methods include irradiating in-vivo fluids passing through a gap in a housing of an in-vivo device introduced to the GI tract of a subject with a plurality of illumination sources positioned on a first side of a gap; detecting with at least one light detector positioned on the opposite side of the gap and facing the illumination sources, light irradiated by the illumination sources; transmitting a plurality of values representing the light detected over time; converting these values to blood concentration values over time, and comparing the blood concentration values to a predetermined threshold value. Based on the comparison, the method includes determining the type of bleeding profile, such that if a plurality of blood concentration values measured consecutively is above the threshold value, the bleeding profile indicates bleeding.