Abstract:
In one example, the method includes forming a metal layer on a silicon-containing structure, after forming the metal layer, performing an ion implantation process to implant silicon atoms into at least one of the metal layer and the silicon-containing structure and performing a first millisecond anneal process so as to form a first metal silicide region in the silicon-containing structure.
Abstract:
In one example, the method includes forming a metal layer on a silicon-containing structure, after forming the metal layer, performing an ion implantation process to implant silicon atoms into at least one of the metal layer and the silicon-containing structure and performing a first millisecond anneal process so as to form a first metal silicide region in the silicon-containing structure.
Abstract:
Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a first fin structure overlying a first type region in a semiconductor substrate and forming a second fin structure overlying a second type region in the semiconductor substrate. A gate is formed overlying each fin structure and defines a channel region in each fin structure. The method includes masking the second type region and etching the first fin structure around the gate in the first fin structure to expose the channel region in the first fin structure. Further, the method includes doping the channel region in the first fin structure, and forming source/drain regions of the first fin structure around the channel region in the first fin structure.
Abstract:
Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a first fin structure overlying a first type region in a semiconductor substrate and forming a second fin structure overlying a second type region in the semiconductor substrate. A gate is formed overlying each fin structure and defines a channel region in each fin structure. The method includes masking the second type region and etching the first fin structure around the gate in the first fin structure to expose the channel region in the first fin structure. Further, the method includes doping the channel region in the first fin structure, and forming source/drain regions of the first fin structure around the channel region in the first fin structure.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a channel region of a fin structure with a first side, a second side, an exposed first end surface and an exposed second end surface. A gate is formed overlying the first side and second side of the channel region. The method includes implanting ions into the channel region through the exposed first end surface and the exposed second end surface. Further, the method includes forming source/drain regions of the fin structure adjacent the exposed first end surface and the exposed second end surface of the channel region.
Abstract:
One illustrative method disclosed herein includes forming a patterned photoresist implant mask that has an opening that is defined, at least partially, by a plurality of non-vertical sidewalls, wherein the implant mask covers one of an N-type FinFET or P-type FinFET device, while the other of the N-type FinFET or P-type FinFET device is exposed by the opening in the patterned photoresist implant mask, and performing at least one source/drain implant process through the opening in the patterned photoresist implant mask to form a doped source/drain implant region in at least one fin of the FinFET device exposed by the opening in the patterned photoresist implant mask.