Abstract:
Methods of facilitating gate height uniformity by controlling recessing of dielectric material and semiconductor devices formed from the methods are provided. The methods include, for instance, forming a transistor of the semiconductor device with an n-type transistor and a p-type transistor, the n-type transistor and the p-type transistor including plurality of sacrificial gate structures and protective masks at upper surfaces of the plurality of sacrificial gate structures; providing a dielectric material over and between the plurality of sacrificial gate structures; partially densifying the dielectric material to form a partially densified dielectric material; further densifying the partially densified dielectric material to create a modified dielectric material; and creating substantially planar surface on the modified dielectric material, to control dielectric material recess and gate height.
Abstract:
Methods of facilitating gate height uniformity by controlling recessing of dielectric material and semiconductor devices formed from the methods are provided. The methods include, for instance, forming a transistor of the semiconductor device with an n-type transistor and a p-type transistor, the n-type transistor and the p-type transistor including plurality of sacrificial gate structures and protective masks at upper surfaces of the plurality of sacrificial gate structures; providing a dielectric material over and between the plurality of sacrificial gate structures; partially densifying the dielectric material to form a partially densified dielectric material; further densifying the partially densified dielectric material to create a modified dielectric material; and creating substantially planar surface on the modified dielectric material, to control dielectric material recess and gate height.
Abstract:
Semiconductor structures and fabrication methods are provided having a bridging film which facilitates adherence of both an underlying layer of dielectric material and an overlying stress-inducing layer. The method includes, for instance, providing a layer of dielectric material, with at least one gate structure disposed therein, over a semiconductor substrate; providing a bridging film over the layer of dielectric material with the at least one gate structure; and providing a stress-inducing layer over the bridging film. The bridging film is selected to facilitate adherence of both the underlying layer of dielectric material and the overlying stress-inducing layer by, in part, forming a chemical bond with the layer of dielectric material, without forming a chemical bond with the stress-inducing layer.