Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to replacement metal gate structures and methods of manufacture. The structure includes at least one short channel device including a dielectric material, a workfunction metal, and a capping material, and a long channel device comprising the dielectric material, the workfunction metal and fluorine free gate conductor material.
Abstract:
A semiconductor transistor has a structure including a semiconductor substrate, a source region, a drain region and a channel region in between the source region and the drain region. A metal gate, having a top conductive portion of tungsten is provided above the channel region. A first silicon nitride protective layer over the source region and the drain region and a second silicon nitride protective layer over the gate region are provided. The first silicon nitride protective layer and the second silicon nitride protective layer are configured to allow punch-through of the first silicon nitride protective layer while preventing etching through the second silicon nitride protective layer. Source and drain silicide is protected by avoiding fully etching a gate opening unless either the etching used would not harm the silicide, or the silicide and source and drain contacts are created prior to fully etching an opening to the gate for a gate contact.
Abstract:
A semiconductor structure includes a lined bottom contact filled with conductive material. The structure further includes a layer of dielectric material surrounding sides of the lined bottom contact, a top contact on the bottom contact, the top contact having a partial liner only along sides thereof with an absence of the liner at a bottom thereof and being filled with the conductive material, and a layer of the dielectric material surrounding sides of the partially lined top contact. Fabrication of the bottom-liner free top contact includes providing a starting structure, the structure including a lined bottom contact filled with conductive material, being surrounded by a layer of dielectric material and having a planarized top surface. The method further includes creating a top layer of dielectric material above the planarized top surface, creating a layer of liner material above the top dielectric layer, creating a top contact opening to the bottom contact, lining the top contact opening with a liner material, removing the liner at a bottom of the top contact opening, exposing the bottom contact, while preserving a portion of the liner on the top dielectric layer sufficient to allow adhesion of a subsequent conductive material, and filling the contact opening with the conductive material.
Abstract:
Performance of a FinFET is enhanced through a structure that exerts physical stress on the channel. The stress is achieved by a combination of tungsten contacts for the source and drain, epitaxially grown raised source and raised drain, and manipulation of aspects of the tungsten contact deposition resulting in enhancement of the inherent stress of tungsten. The stress can further be enhanced by epitaxially re-growing the portion of the raised source and drain removed by etching trenches for the contacts and/or etching deeper trenches (and corresponding longer contacts) below a surface of the fin.