Abstract:
A method of forming double and/or multiple numbers of fins of a FinFET device using a Si/SiGe selective epitaxial growth process and the resulting device are provided. Embodiments include forming a Si pillar in an oxide layer, the Si pillar having a bottom portion and a top portion; removing the top portion of the Si pillar; forming a SiGe pillar on the bottom portion of the Si pillar; reducing the SiGe pillar; forming a first set of Si fins on opposite sides of the reduced SiGe pillar; removing the SiGe pillar; replacing the Si fins with SiGe fins; reducing the SiGe fins; forming a second set of Si fins on opposite sides of the SiGe fins; and removing the SiGe fins.
Abstract:
One illustrative gate structure for an NFET device includes a gate insulation layer formed above a semiconducting substrate, a first metal layer comprised of titanium nitride (TiN) positioned above the gate insulation layer, a second metal layer comprised of tantalum nitride (TaN) positioned above the first metal layer, a third metal layer comprised of titanium aluminum (TiAl) positioned above the second metal layer, a fourth metal layer comprised of an aluminum-containing material positioned above the third metal layer, a fifth metal layer comprised of titanium positioned above the fourth metal layer, and a layer of aluminum positioned above the fifth metal layer.
Abstract:
One illustrative gate structure for an NFET device includes a gate insulation layer formed above a semiconducting substrate, a first metal layer comprised of titanium nitride (TiN) positioned above the gate insulation layer, a second metal layer comprised of tantalum nitride (TaN) positioned above the first metal layer, a third metal layer comprised of titanium aluminum (TiAl) positioned above the second metal layer, a fourth metal layer comprised of an aluminum-containing material positioned above the third metal layer, a fifth metal layer comprised of titanium positioned above the fourth metal layer, and a layer of aluminum positioned above the fifth metal layer.
Abstract:
A cobalt contact includes a dual silicide barrier layer. The barrier layer, which may be formed in situ, includes silicides of titanium and cobalt, and provides an effective adhesion layer between the cobalt contact and a conductive device region such as the source/drain junction of a semiconductor device, eliminating void formation during a metal anneal.
Abstract:
A method of forming double and/or multiple numbers of fins of a FinFET device using a Si/SiGe selective epitaxial growth process and the resulting device are provided. Embodiments include forming a Si pillar in an oxide layer, the Si pillar having a bottom portion and a top portion; removing the top portion of the Si pillar; forming a SiGe pillar on the bottom portion of the Si pillar; reducing the SiGe pillar; forming a first set of Si fins on opposite sides of the reduced SiGe pillar; removing the SiGe pillar; replacing the Si fins with SiGe fins; reducing the SiGe fins; forming a second set of Si fins on opposite sides of the SiGe fins; and removing the SiGe fins.
Abstract:
A cobalt contact includes a dual silicide barrier layer. The barrier layer, which may be formed in situ, includes silicides of titanium and cobalt, and provides an effective adhesion layer between the cobalt contact and a conductive device region such as the source/drain junction of a semiconductor device, eliminating void formation during a metal anneal.
Abstract:
A cobalt contact includes a dual silicide barrier layer. The barrier layer, which may be formed in situ, includes silicides of titanium and cobalt, and provides an effective adhesion layer between the cobalt contact and a conductive device region such as the source/drain junction of a semiconductor device, eliminating void formation during a metal anneal.