Abstract:
Aspects of the present invention relate to approaches for forming a semiconductor device such as a field-effect-transistor (FET) having a metal gate with improved performance. A metal gate is formed on a substrate in the semiconductor device. Further processing can result in unwanted oxidation in the metal that forms the metal gate. A reducing agent can be used to de-oxidize the metal that forms the metal gate, leaving a substantially non-oxidized surface.
Abstract:
Aspects of the present invention relate to approaches for forming a semiconductor device such as a field-effect-transistor (FET) having a metal gate with improved performance. A metal gate is formed on a substrate in the semiconductor device. Further processing can result in unwanted oxidation in the metal that forms the metal gate. A reducing agent can be used to de-oxidize the metal that forms the metal gate, leaving a substantially non-oxidized surface.
Abstract:
An improved method for fabricating a semiconductor device is provided. The method includes: depositing a dielectric layer on a substrate; depositing a first cap layer on the dielectric layer; depositing an etch stop layer on the dielectric layer; and depositing a dummy cap layer on the etch stop layer to form a partial gate structure. Also provided is a partially formed semiconductor device. The partially formed semiconductor device includes: a substrate; a dielectric layer on the substrate; a first cap layer on the dielectric layer; an etch stop layer on the dielectric layer; and a dummy cap layer on the etch stop layer forming a partial gate structure.
Abstract:
One illustrative gate structure for an NFET device includes a gate insulation layer formed above a semiconducting substrate, a first metal layer comprised of titanium nitride (TiN) positioned above the gate insulation layer, a second metal layer comprised of tantalum nitride (TaN) positioned above the first metal layer, a third metal layer comprised of titanium aluminum (TiAl) positioned above the second metal layer, a fourth metal layer comprised of an aluminum-containing material positioned above the third metal layer, a fifth metal layer comprised of titanium positioned above the fourth metal layer, and a layer of aluminum positioned above the fifth metal layer.
Abstract:
One illustrative gate structure for an NFET device includes a gate insulation layer formed above a semiconducting substrate, a first metal layer comprised of titanium nitride (TiN) positioned above the gate insulation layer, a second metal layer comprised of tantalum nitride (TaN) positioned above the first metal layer, a third metal layer comprised of titanium aluminum (TiAl) positioned above the second metal layer, a fourth metal layer comprised of an aluminum-containing material positioned above the third metal layer, a fifth metal layer comprised of titanium positioned above the fourth metal layer, and a layer of aluminum positioned above the fifth metal layer.